Loading…

TDCOSMO

Strong lensing time delays can measure the Hubble constant H0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H0 from the cosmic...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2021-05, Vol.649
Main Authors: Birrer, Simon, Treu, Tommaso
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Strong lensing time delays can measure the Hubble constant H0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H0 from the cosmic microwave background. However, without assumptions on the radial mass density profile – and relying exclusively on stellar kinematics to break the mass-sheet degeneracy – the precision drops to 8% with the current data obtained using the seven TDCOSMO lenses, which is insufficient to resolve the H0 tension. With the addition of external information from 33 Sloan Lens ACS (SLACS) lenses, the precision improves to 5% if the deflectors of TDCOSMO and SLACS lenses are drawn from the same population. We investigate the prospect of improving the precision of time-delay cosmography without relying on mass profile assumptions to break the mass-sheet degeneracy. Our forecasts are based on a previously published hierarchical framework. With existing samples and technology, 3.3% precision on H0 can be reached by adding spatially resolved kinematics of the seven TDCOSMO lenses. The precision improves to 2.5% with the further addition of kinematics for 50 nontime-delay lenses from SLACS and the Strong Lensing Legacy Survey. Expanding the samples to 40 time-delay and 200 nontime-delay lenses will improve the precision to 1.5% and 1.2%, respectively. Time-delay cosmography can reach sufficient precision to resolve the Hubble tension at 3–5σ, without assumptions on the radial mass profile of lens galaxies. By obtaining this precision with and without external datasets, we will test the consistency of the samples and enable further improvements based on even larger future samples of time-delay and nontime-delay lenses (e.g., from the Rubin, Euclid, and Roman Observatories).
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202039179