Loading…
Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models
Context. LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optic...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2021-05, Vol.649, p.A167 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3 |
container_end_page | |
container_issue | |
container_start_page | A167 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 649 |
creator | Lennon, D. J. Maíz Apellániz, J. Irrgang, A. Bohlin, R. Deustua, S. Dufton, P. L. Simón-Díaz, S. Herrero, A. Casares, J. Muñoz-Darias, T. Smartt, S. J. González Hernández, J. I. de Burgos, A. |
description | Context.
LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims.
Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods.
The Space Telescope Imaging Spectrograph (STIS) on board the
Hubble
Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The
Hubble
data, together with the
Gaia
EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the
T
eff
of the Bstr using the silicon ionization balance, and inferred
T
eff
for the Be star from the fit to the SED.
Results.
The UV data strongly constrain the microturbulence velocity to ≲2 km s
−1
for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the
Hubble
SED. For the B+BH single-star model, we find the parameters (
T
eff
, log(
L
/
L
⊙
),
M
spec
/
M
⊙
) of the B-type star to be (15 300 ± 300 K, 3.23
−0.10
+0.09
, 5.2
−1.4
+1.8
). For the Bstr star we obtain (12 500 ± 100 K, 2.70
−0.09
+0.09
, 0.8
−0.3
+0.5
), and for the Be star (18 900 ± 200 K, 3.04
−0.09
+0.09
, 3.4
−1.8
+3.5
). While the Be+Bstr model is a better fit to the He
I
lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si
IV
resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions.
We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its tempe |
doi_str_mv | 10.1051/0004-6361/202040253 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546968791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546968791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKtP4CbgssTm5DrjzpZqhYIbuw6ZSUKnTpsxmSJ9e6dUujr88F84H0KPQJ-BSphSSgVRXMGUUUYFZZJfoREIzgjVQl2j0cVxi-5y3g6SQcFHaL08VFXrce583aeY69gdcQx4NSPwgudx19nU5LjHv02_wbNJ1dr6m2ziELF7h2d-kvvUdJ13JPc24V10vs336CbYNvuH_ztG67fF13xJVp_vH_PXFakZ15yAdlw60IWsg3RBarBcSF06F0QAEZSHUtpQKOaFKErglQ0aQNtgK1Gqio_R07m3S_Hn4HNvtvGQ9sOkYVKoUhV6SI0RP7vq4cGcfDBdanY2HQ1Qc-JnTnTMiY658ON_39RhEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546968791</pqid></control><display><type>article</type><title>Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models</title><source>EZB Free E-Journals</source><creator>Lennon, D. J. ; Maíz Apellániz, J. ; Irrgang, A. ; Bohlin, R. ; Deustua, S. ; Dufton, P. L. ; Simón-Díaz, S. ; Herrero, A. ; Casares, J. ; Muñoz-Darias, T. ; Smartt, S. J. ; González Hernández, J. I. ; de Burgos, A.</creator><creatorcontrib>Lennon, D. J. ; Maíz Apellániz, J. ; Irrgang, A. ; Bohlin, R. ; Deustua, S. ; Dufton, P. L. ; Simón-Díaz, S. ; Herrero, A. ; Casares, J. ; Muñoz-Darias, T. ; Smartt, S. J. ; González Hernández, J. I. ; de Burgos, A.</creatorcontrib><description>Context.
LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims.
Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods.
The Space Telescope Imaging Spectrograph (STIS) on board the
Hubble
Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The
Hubble
data, together with the
Gaia
EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the
T
eff
of the Bstr using the silicon ionization balance, and inferred
T
eff
for the Be star from the fit to the SED.
Results.
The UV data strongly constrain the microturbulence velocity to ≲2 km s
−1
for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the
Hubble
SED. For the B+BH single-star model, we find the parameters (
T
eff
, log(
L
/
L
⊙
),
M
spec
/
M
⊙
) of the B-type star to be (15 300 ± 300 K, 3.23
−0.10
+0.09
, 5.2
−1.4
+1.8
). For the Bstr star we obtain (12 500 ± 100 K, 2.70
−0.09
+0.09
, 0.8
−0.3
+0.5
), and for the Be star (18 900 ± 200 K, 3.04
−0.09
+0.09
, 3.4
−1.8
+3.5
). While the Be+Bstr model is a better fit to the He
I
lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si
IV
resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions.
We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the
T
eff
and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21
−8
+9
M
⊙
.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202040253</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astronomical models ; B stars ; Binary stars ; Black holes ; Flux ; Hubble Space Telescope ; Luminosity ; Parallax ; Parameters ; Resonance lines ; Silicon ; Space telescopes ; Spectrum analysis</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-05, Vol.649, p.A167</ispartof><rights>Copyright EDP Sciences May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3</citedby><cites>FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3</cites><orcidid>0000-0003-3063-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lennon, D. J.</creatorcontrib><creatorcontrib>Maíz Apellániz, J.</creatorcontrib><creatorcontrib>Irrgang, A.</creatorcontrib><creatorcontrib>Bohlin, R.</creatorcontrib><creatorcontrib>Deustua, S.</creatorcontrib><creatorcontrib>Dufton, P. L.</creatorcontrib><creatorcontrib>Simón-Díaz, S.</creatorcontrib><creatorcontrib>Herrero, A.</creatorcontrib><creatorcontrib>Casares, J.</creatorcontrib><creatorcontrib>Muñoz-Darias, T.</creatorcontrib><creatorcontrib>Smartt, S. J.</creatorcontrib><creatorcontrib>González Hernández, J. I.</creatorcontrib><creatorcontrib>de Burgos, A.</creatorcontrib><title>Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models</title><title>Astronomy and astrophysics (Berlin)</title><description>Context.
LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims.
Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods.
The Space Telescope Imaging Spectrograph (STIS) on board the
Hubble
Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The
Hubble
data, together with the
Gaia
EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the
T
eff
of the Bstr using the silicon ionization balance, and inferred
T
eff
for the Be star from the fit to the SED.
Results.
The UV data strongly constrain the microturbulence velocity to ≲2 km s
−1
for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the
Hubble
SED. For the B+BH single-star model, we find the parameters (
T
eff
, log(
L
/
L
⊙
),
M
spec
/
M
⊙
) of the B-type star to be (15 300 ± 300 K, 3.23
−0.10
+0.09
, 5.2
−1.4
+1.8
). For the Bstr star we obtain (12 500 ± 100 K, 2.70
−0.09
+0.09
, 0.8
−0.3
+0.5
), and for the Be star (18 900 ± 200 K, 3.04
−0.09
+0.09
, 3.4
−1.8
+3.5
). While the Be+Bstr model is a better fit to the He
I
lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si
IV
resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions.
We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the
T
eff
and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21
−8
+9
M
⊙
.</description><subject>Astronomical models</subject><subject>B stars</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Flux</subject><subject>Hubble Space Telescope</subject><subject>Luminosity</subject><subject>Parallax</subject><subject>Parameters</subject><subject>Resonance lines</subject><subject>Silicon</subject><subject>Space telescopes</subject><subject>Spectrum analysis</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKtP4CbgssTm5DrjzpZqhYIbuw6ZSUKnTpsxmSJ9e6dUujr88F84H0KPQJ-BSphSSgVRXMGUUUYFZZJfoREIzgjVQl2j0cVxi-5y3g6SQcFHaL08VFXrce583aeY69gdcQx4NSPwgudx19nU5LjHv02_wbNJ1dr6m2ziELF7h2d-kvvUdJ13JPc24V10vs336CbYNvuH_ztG67fF13xJVp_vH_PXFakZ15yAdlw60IWsg3RBarBcSF06F0QAEZSHUtpQKOaFKErglQ0aQNtgK1Gqio_R07m3S_Hn4HNvtvGQ9sOkYVKoUhV6SI0RP7vq4cGcfDBdanY2HQ1Qc-JnTnTMiY658ON_39RhEA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Lennon, D. J.</creator><creator>Maíz Apellániz, J.</creator><creator>Irrgang, A.</creator><creator>Bohlin, R.</creator><creator>Deustua, S.</creator><creator>Dufton, P. L.</creator><creator>Simón-Díaz, S.</creator><creator>Herrero, A.</creator><creator>Casares, J.</creator><creator>Muñoz-Darias, T.</creator><creator>Smartt, S. J.</creator><creator>González Hernández, J. I.</creator><creator>de Burgos, A.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3063-4867</orcidid></search><sort><creationdate>202105</creationdate><title>Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models</title><author>Lennon, D. J. ; Maíz Apellániz, J. ; Irrgang, A. ; Bohlin, R. ; Deustua, S. ; Dufton, P. L. ; Simón-Díaz, S. ; Herrero, A. ; Casares, J. ; Muñoz-Darias, T. ; Smartt, S. J. ; González Hernández, J. I. ; de Burgos, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>B stars</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Flux</topic><topic>Hubble Space Telescope</topic><topic>Luminosity</topic><topic>Parallax</topic><topic>Parameters</topic><topic>Resonance lines</topic><topic>Silicon</topic><topic>Space telescopes</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lennon, D. J.</creatorcontrib><creatorcontrib>Maíz Apellániz, J.</creatorcontrib><creatorcontrib>Irrgang, A.</creatorcontrib><creatorcontrib>Bohlin, R.</creatorcontrib><creatorcontrib>Deustua, S.</creatorcontrib><creatorcontrib>Dufton, P. L.</creatorcontrib><creatorcontrib>Simón-Díaz, S.</creatorcontrib><creatorcontrib>Herrero, A.</creatorcontrib><creatorcontrib>Casares, J.</creatorcontrib><creatorcontrib>Muñoz-Darias, T.</creatorcontrib><creatorcontrib>Smartt, S. J.</creatorcontrib><creatorcontrib>González Hernández, J. I.</creatorcontrib><creatorcontrib>de Burgos, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lennon, D. J.</au><au>Maíz Apellániz, J.</au><au>Irrgang, A.</au><au>Bohlin, R.</au><au>Deustua, S.</au><au>Dufton, P. L.</au><au>Simón-Díaz, S.</au><au>Herrero, A.</au><au>Casares, J.</au><au>Muñoz-Darias, T.</au><au>Smartt, S. J.</au><au>González Hernández, J. I.</au><au>de Burgos, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>649</volume><spage>A167</spage><pages>A167-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context.
LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims.
Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods.
The Space Telescope Imaging Spectrograph (STIS) on board the
Hubble
Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The
Hubble
data, together with the
Gaia
EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the
T
eff
of the Bstr using the silicon ionization balance, and inferred
T
eff
for the Be star from the fit to the SED.
Results.
The UV data strongly constrain the microturbulence velocity to ≲2 km s
−1
for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the
Hubble
SED. For the B+BH single-star model, we find the parameters (
T
eff
, log(
L
/
L
⊙
),
M
spec
/
M
⊙
) of the B-type star to be (15 300 ± 300 K, 3.23
−0.10
+0.09
, 5.2
−1.4
+1.8
). For the Bstr star we obtain (12 500 ± 100 K, 2.70
−0.09
+0.09
, 0.8
−0.3
+0.5
), and for the Be star (18 900 ± 200 K, 3.04
−0.09
+0.09
, 3.4
−1.8
+3.5
). While the Be+Bstr model is a better fit to the He
I
lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si
IV
resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions.
We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the
T
eff
and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21
−8
+9
M
⊙
.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202040253</doi><orcidid>https://orcid.org/0000-0003-3063-4867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2021-05, Vol.649, p.A167 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2546968791 |
source | EZB Free E-Journals |
subjects | Astronomical models B stars Binary stars Black holes Flux Hubble Space Telescope Luminosity Parallax Parameters Resonance lines Silicon Space telescopes Spectrum analysis |
title | Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hubble%20spectroscopy%20of%20LB-1:%20Comparison%20with%20B+black-hole%20and%20Be+stripped-star%20models&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Lennon,%20D.%20J.&rft.date=2021-05&rft.volume=649&rft.spage=A167&rft.pages=A167-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202040253&rft_dat=%3Cproquest_cross%3E2546968791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2373-17d35d1785cf5df571a34579ddf4f14f6e195af862e448913baf7117afab496b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546968791&rft_id=info:pmid/&rfr_iscdi=true |