Loading…

Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry

The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende wi...

Full description

Saved in:
Bibliographic Details
Published in:Geological journal (Chichester, England) England), 2021-07, Vol.56 (7), p.3808-3832
Main Authors: Fang, Lin‐Ru, Tang, Dong‐Mei, Junge, Malte, Qin, Ke‐Zhang, Mao, Ya‐Jing, Evans, Noreen J., Wohlgemuth‐Ueberwasser, Cora C., Niu, Yan‐Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873
cites cdi_FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873
container_end_page 3832
container_issue 7
container_start_page 3808
container_title Geological journal (Chichester, England)
container_volume 56
creator Fang, Lin‐Ru
Tang, Dong‐Mei
Junge, Malte
Qin, Ke‐Zhang
Mao, Ya‐Jing
Evans, Noreen J.
Wohlgemuth‐Ueberwasser, Cora C.
Niu, Yan‐Jie
description The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende with low‐Al contents, high‐rare earth element (REE) abundances and negative Eu anomalies. The net‐textured mineralized lherzolite contains low‐Fo (74–82) olivine and high‐Al hornblende, the latter characterized by low REE concentrations and no Eu anomaly. The contrasting composition of olivine and hornblende suggests two stages of magmatism. In situ analysis of pentlandite, chalcopyrite and pyrrhotite shows that platinum‐group elements contents in sulphides are low. Contrasting Ni, Co, Se, Ag, Cd, and Pb contents in sulphides from net‐textured and in disseminated ores also supports two pulses of magmas, each with a distinct chemical composition. High‐Mg basaltic magma characterized the first stage, followed by a second‐stage less basic magma with a high H2O content. Whole‐rock Sr and Nd isotopic signatures suggest that about 4–6% crustal materials were added to the depleted mantle source. The fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen based on sulphur content at sulphide saturation modelling. Injection of magma enriched in H2O further enhanced sulphide aggregation and deposit forming. It is proposed that two pulses of magma injections occurred at the Tulaergen deposit, with the products of the first pulse settling at the base, and of the second one with dense mineralization laying at the top of the deposit. Tulaergen deposit has two stages of magmatism, which formed disseminated and net‐textured ores, respectively, suggested by the contrasting Fo values of olivine (a) and Al content of hornblende (b). Sulphur content at sulphide saturation modelling (c) reveals that fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen. In total, the mineralization of Tulaergen is closely related to the two pulses of magma, the olivine crystallization and the crustal assimilation.
doi_str_mv 10.1002/gj.4129
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547151669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547151669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873</originalsourceid><addsrcrecordid>eNp1kc1O4zAQx60VSFvY1b7CSBw4QIudb3NDVZcPIbiUc-Q4k9RtYgc7oeqeeAReZ1-HJ8GlwI3TjGZ-85_5awj5w-iEURqc1ctJxAL-g4wY5XzMaBjtkRGlaeDzmP4kB84tKWWMRmxE_s_X5vX5xfWiRmhF3YpeuRaELqFVGq1o1D9fMhpMBfOhEWhr1KCVXGHjB6XpOrRQYmec6kFpQOF6tBrmSmi3EPoU7oztF55do-thulBanMPsSZWoJUJlTQvF0KzAGrmCGo1cYKtcbzfvV3hFLzx8XgNf3V9kvxKNw98f8ZA8_J3Np1fj2_vL6-nF7VgGmfdfiJQLQYs0i-K0qGhYJiKRUtIqLcOw5FkRc5rwpMIgxoIXWcazJK3CMmAYhVkaHpKjnW5nzePgLeRLM1jtV-ZBHKUsZknCPXW8o6Q1zlms8s6qVthNzmi-_UteL_PtXzx5siPXqsHNd1h-efNOvwFddZR9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547151669</pqid></control><display><type>article</type><title>Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fang, Lin‐Ru ; Tang, Dong‐Mei ; Junge, Malte ; Qin, Ke‐Zhang ; Mao, Ya‐Jing ; Evans, Noreen J. ; Wohlgemuth‐Ueberwasser, Cora C. ; Niu, Yan‐Jie</creator><creatorcontrib>Fang, Lin‐Ru ; Tang, Dong‐Mei ; Junge, Malte ; Qin, Ke‐Zhang ; Mao, Ya‐Jing ; Evans, Noreen J. ; Wohlgemuth‐Ueberwasser, Cora C. ; Niu, Yan‐Jie</creatorcontrib><description>The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende with low‐Al contents, high‐rare earth element (REE) abundances and negative Eu anomalies. The net‐textured mineralized lherzolite contains low‐Fo (74–82) olivine and high‐Al hornblende, the latter characterized by low REE concentrations and no Eu anomaly. The contrasting composition of olivine and hornblende suggests two stages of magmatism. In situ analysis of pentlandite, chalcopyrite and pyrrhotite shows that platinum‐group elements contents in sulphides are low. Contrasting Ni, Co, Se, Ag, Cd, and Pb contents in sulphides from net‐textured and in disseminated ores also supports two pulses of magmas, each with a distinct chemical composition. High‐Mg basaltic magma characterized the first stage, followed by a second‐stage less basic magma with a high H2O content. Whole‐rock Sr and Nd isotopic signatures suggest that about 4–6% crustal materials were added to the depleted mantle source. The fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen based on sulphur content at sulphide saturation modelling. Injection of magma enriched in H2O further enhanced sulphide aggregation and deposit forming. It is proposed that two pulses of magma injections occurred at the Tulaergen deposit, with the products of the first pulse settling at the base, and of the second one with dense mineralization laying at the top of the deposit. Tulaergen deposit has two stages of magmatism, which formed disseminated and net‐textured ores, respectively, suggested by the contrasting Fo values of olivine (a) and Al content of hornblende (b). Sulphur content at sulphide saturation modelling (c) reveals that fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen. In total, the mineralization of Tulaergen is closely related to the two pulses of magma, the olivine crystallization and the crustal assimilation.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.4129</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aggregation ; Aluminum ; Anomalies ; Central Asian Orogenic Belt ; Chalcopyrite ; Chemical composition ; Cobalt ; Contamination ; Copper ; Crystallization ; Earth mantle ; Fractional crystallization ; Geochemistry ; Isotopes ; Lava ; Lead ; Magma ; magmatic sulphide deposit ; mineral chemistry ; Mineralization ; Minerals ; Nickel ; Nickel ores ; Olivine ; Ores ; Orogeny ; Pentlandite ; Platinum ; Pyrrhotite ; Rare earth elements ; Rocks ; Saturation ; Segregation ; Selenium ; Silver ; Sulfides ; Sulfur ; Sulphides ; Sulphur ; Tulaergen ; two‐stage magmatism ; Ultramafic materials ; Ultramafic rocks</subject><ispartof>Geological journal (Chichester, England), 2021-07, Vol.56 (7), p.3808-3832</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873</citedby><cites>FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873</cites><orcidid>0000-0001-7835-0332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Lin‐Ru</creatorcontrib><creatorcontrib>Tang, Dong‐Mei</creatorcontrib><creatorcontrib>Junge, Malte</creatorcontrib><creatorcontrib>Qin, Ke‐Zhang</creatorcontrib><creatorcontrib>Mao, Ya‐Jing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Wohlgemuth‐Ueberwasser, Cora C.</creatorcontrib><creatorcontrib>Niu, Yan‐Jie</creatorcontrib><title>Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry</title><title>Geological journal (Chichester, England)</title><description>The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende with low‐Al contents, high‐rare earth element (REE) abundances and negative Eu anomalies. The net‐textured mineralized lherzolite contains low‐Fo (74–82) olivine and high‐Al hornblende, the latter characterized by low REE concentrations and no Eu anomaly. The contrasting composition of olivine and hornblende suggests two stages of magmatism. In situ analysis of pentlandite, chalcopyrite and pyrrhotite shows that platinum‐group elements contents in sulphides are low. Contrasting Ni, Co, Se, Ag, Cd, and Pb contents in sulphides from net‐textured and in disseminated ores also supports two pulses of magmas, each with a distinct chemical composition. High‐Mg basaltic magma characterized the first stage, followed by a second‐stage less basic magma with a high H2O content. Whole‐rock Sr and Nd isotopic signatures suggest that about 4–6% crustal materials were added to the depleted mantle source. The fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen based on sulphur content at sulphide saturation modelling. Injection of magma enriched in H2O further enhanced sulphide aggregation and deposit forming. It is proposed that two pulses of magma injections occurred at the Tulaergen deposit, with the products of the first pulse settling at the base, and of the second one with dense mineralization laying at the top of the deposit. Tulaergen deposit has two stages of magmatism, which formed disseminated and net‐textured ores, respectively, suggested by the contrasting Fo values of olivine (a) and Al content of hornblende (b). Sulphur content at sulphide saturation modelling (c) reveals that fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen. In total, the mineralization of Tulaergen is closely related to the two pulses of magma, the olivine crystallization and the crustal assimilation.</description><subject>Aggregation</subject><subject>Aluminum</subject><subject>Anomalies</subject><subject>Central Asian Orogenic Belt</subject><subject>Chalcopyrite</subject><subject>Chemical composition</subject><subject>Cobalt</subject><subject>Contamination</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Earth mantle</subject><subject>Fractional crystallization</subject><subject>Geochemistry</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Lead</subject><subject>Magma</subject><subject>magmatic sulphide deposit</subject><subject>mineral chemistry</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Nickel</subject><subject>Nickel ores</subject><subject>Olivine</subject><subject>Ores</subject><subject>Orogeny</subject><subject>Pentlandite</subject><subject>Platinum</subject><subject>Pyrrhotite</subject><subject>Rare earth elements</subject><subject>Rocks</subject><subject>Saturation</subject><subject>Segregation</subject><subject>Selenium</subject><subject>Silver</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Tulaergen</subject><subject>two‐stage magmatism</subject><subject>Ultramafic materials</subject><subject>Ultramafic rocks</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O4zAQx60VSFvY1b7CSBw4QIudb3NDVZcPIbiUc-Q4k9RtYgc7oeqeeAReZ1-HJ8GlwI3TjGZ-85_5awj5w-iEURqc1ctJxAL-g4wY5XzMaBjtkRGlaeDzmP4kB84tKWWMRmxE_s_X5vX5xfWiRmhF3YpeuRaELqFVGq1o1D9fMhpMBfOhEWhr1KCVXGHjB6XpOrRQYmec6kFpQOF6tBrmSmi3EPoU7oztF55do-thulBanMPsSZWoJUJlTQvF0KzAGrmCGo1cYKtcbzfvV3hFLzx8XgNf3V9kvxKNw98f8ZA8_J3Np1fj2_vL6-nF7VgGmfdfiJQLQYs0i-K0qGhYJiKRUtIqLcOw5FkRc5rwpMIgxoIXWcazJK3CMmAYhVkaHpKjnW5nzePgLeRLM1jtV-ZBHKUsZknCPXW8o6Q1zlms8s6qVthNzmi-_UteL_PtXzx5siPXqsHNd1h-efNOvwFddZR9</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Fang, Lin‐Ru</creator><creator>Tang, Dong‐Mei</creator><creator>Junge, Malte</creator><creator>Qin, Ke‐Zhang</creator><creator>Mao, Ya‐Jing</creator><creator>Evans, Noreen J.</creator><creator>Wohlgemuth‐Ueberwasser, Cora C.</creator><creator>Niu, Yan‐Jie</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7835-0332</orcidid></search><sort><creationdate>202107</creationdate><title>Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry</title><author>Fang, Lin‐Ru ; Tang, Dong‐Mei ; Junge, Malte ; Qin, Ke‐Zhang ; Mao, Ya‐Jing ; Evans, Noreen J. ; Wohlgemuth‐Ueberwasser, Cora C. ; Niu, Yan‐Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregation</topic><topic>Aluminum</topic><topic>Anomalies</topic><topic>Central Asian Orogenic Belt</topic><topic>Chalcopyrite</topic><topic>Chemical composition</topic><topic>Cobalt</topic><topic>Contamination</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Earth mantle</topic><topic>Fractional crystallization</topic><topic>Geochemistry</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Lead</topic><topic>Magma</topic><topic>magmatic sulphide deposit</topic><topic>mineral chemistry</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Nickel</topic><topic>Nickel ores</topic><topic>Olivine</topic><topic>Ores</topic><topic>Orogeny</topic><topic>Pentlandite</topic><topic>Platinum</topic><topic>Pyrrhotite</topic><topic>Rare earth elements</topic><topic>Rocks</topic><topic>Saturation</topic><topic>Segregation</topic><topic>Selenium</topic><topic>Silver</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Tulaergen</topic><topic>two‐stage magmatism</topic><topic>Ultramafic materials</topic><topic>Ultramafic rocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Lin‐Ru</creatorcontrib><creatorcontrib>Tang, Dong‐Mei</creatorcontrib><creatorcontrib>Junge, Malte</creatorcontrib><creatorcontrib>Qin, Ke‐Zhang</creatorcontrib><creatorcontrib>Mao, Ya‐Jing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Wohlgemuth‐Ueberwasser, Cora C.</creatorcontrib><creatorcontrib>Niu, Yan‐Jie</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Lin‐Ru</au><au>Tang, Dong‐Mei</au><au>Junge, Malte</au><au>Qin, Ke‐Zhang</au><au>Mao, Ya‐Jing</au><au>Evans, Noreen J.</au><au>Wohlgemuth‐Ueberwasser, Cora C.</au><au>Niu, Yan‐Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2021-07</date><risdate>2021</risdate><volume>56</volume><issue>7</issue><spage>3808</spage><epage>3832</epage><pages>3808-3832</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>The Tulaergen magmatic Ni–Cu deposit is related to mafic‐ultramafic rocks of the Central Asian Orogenic Belt. The ore‐host rocks are lherzolite and websterite and the major ore types are net‐textured and sparsely disseminated ores. The disseminated ores host high‐Fo (82–85) olivine and hornblende with low‐Al contents, high‐rare earth element (REE) abundances and negative Eu anomalies. The net‐textured mineralized lherzolite contains low‐Fo (74–82) olivine and high‐Al hornblende, the latter characterized by low REE concentrations and no Eu anomaly. The contrasting composition of olivine and hornblende suggests two stages of magmatism. In situ analysis of pentlandite, chalcopyrite and pyrrhotite shows that platinum‐group elements contents in sulphides are low. Contrasting Ni, Co, Se, Ag, Cd, and Pb contents in sulphides from net‐textured and in disseminated ores also supports two pulses of magmas, each with a distinct chemical composition. High‐Mg basaltic magma characterized the first stage, followed by a second‐stage less basic magma with a high H2O content. Whole‐rock Sr and Nd isotopic signatures suggest that about 4–6% crustal materials were added to the depleted mantle source. The fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen based on sulphur content at sulphide saturation modelling. Injection of magma enriched in H2O further enhanced sulphide aggregation and deposit forming. It is proposed that two pulses of magma injections occurred at the Tulaergen deposit, with the products of the first pulse settling at the base, and of the second one with dense mineralization laying at the top of the deposit. Tulaergen deposit has two stages of magmatism, which formed disseminated and net‐textured ores, respectively, suggested by the contrasting Fo values of olivine (a) and Al content of hornblende (b). Sulphur content at sulphide saturation modelling (c) reveals that fractional crystallization of olivine and crustal contamination play important roles in sulphur segregation at Tulaergen. In total, the mineralization of Tulaergen is closely related to the two pulses of magma, the olivine crystallization and the crustal assimilation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/gj.4129</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7835-0332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2021-07, Vol.56 (7), p.3808-3832
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_2547151669
source Wiley-Blackwell Read & Publish Collection
subjects Aggregation
Aluminum
Anomalies
Central Asian Orogenic Belt
Chalcopyrite
Chemical composition
Cobalt
Contamination
Copper
Crystallization
Earth mantle
Fractional crystallization
Geochemistry
Isotopes
Lava
Lead
Magma
magmatic sulphide deposit
mineral chemistry
Mineralization
Minerals
Nickel
Nickel ores
Olivine
Ores
Orogeny
Pentlandite
Platinum
Pyrrhotite
Rare earth elements
Rocks
Saturation
Segregation
Selenium
Silver
Sulfides
Sulfur
Sulphides
Sulphur
Tulaergen
two‐stage magmatism
Ultramafic materials
Ultramafic rocks
title Two‐stage magmatism and mineralization of Tulaergen nickel‐copper deposit in eastern Tianshan, North‐west China: Evidence from bulk rock geochemistry and in situ mineral chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90stage%20magmatism%20and%20mineralization%20of%20Tulaergen%20nickel%E2%80%90copper%20deposit%20in%20eastern%20Tianshan,%20North%E2%80%90west%20China:%20Evidence%20from%20bulk%20rock%20geochemistry%20and%20in%20situ%20mineral%20chemistry&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Fang,%20Lin%E2%80%90Ru&rft.date=2021-07&rft.volume=56&rft.issue=7&rft.spage=3808&rft.epage=3832&rft.pages=3808-3832&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.4129&rft_dat=%3Cproquest_cross%3E2547151669%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2899-ba79aa0b78457bf03d6a6ccc0f7d33d98b590696fe25eb9b889867f3d21e43873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547151669&rft_id=info:pmid/&rfr_iscdi=true