Loading…
Jackknife empirical likelihood-based inference for S-Gini indices
The widely used income inequality measure, Gini index, is extended to form a family of income inequality measures known as Single-Series Gini (S-Gini) indies. In this study, we develop empirical likelihood (EL) and jackknife empirical likelihood (JEL) based inference for the S-Gini indices. We prove...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2021-07, Vol.50 (6), p.1645-1661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The widely used income inequality measure, Gini index, is extended to form a family of income inequality measures known as Single-Series Gini (S-Gini) indies. In this study, we develop empirical likelihood (EL) and jackknife empirical likelihood (JEL) based inference for the S-Gini indices. We prove that the limiting distribution of both EL and JEL ratio statistics are Chi-square distributions with one degree of freedom. Using the asymptotic distribution we construct EL and JEL based confidence intervals for relative S-Gini indices. We also give bootstrap-t and bootstrap calibrated empirical likelihood confidence intervals for the S-Gini indices. A numerical study is carried out to compare the performances of the proposed asymptotic confidence interval and the bootstrap methods. A test for S-Gini indices based on jackknife empirical likelihood ratio is also proposed. Finally, we illustrate the proposed method using an income data. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2019.1586930 |