Loading…
Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers
In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(...
Saved in:
Published in: | Chemistry : a European journal 2021-07, Vol.27 (37), p.9666-9673 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9673 |
container_issue | 37 |
container_start_page | 9666 |
container_title | Chemistry : a European journal |
container_volume | 27 |
creator | Yashiro, Atsushi Tanaka, Yuya Tada, Tomofumi Fujii, Shintaro Nishino, Tomoaki Akita, Munetaka |
description | In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.
The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways. |
doi_str_mv | 10.1002/chem.202100828 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2547566639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547566639</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63</originalsourceid><addsrcrecordid>eNo9kM9O3DAQxi1UJLYL154t9QJSs_WfxIl7g4iySEuRKFWPkePMbgxZO9iJ0AohceXGC3Doq_EkNQJxmdE3-s18mg-hL5TMKCHsu25hPWOERVGwYgtNaMZownORfUITItM8ERmXO-hzCFeEECk4n6Dnc79S1q1hUF1nND5zHeixUx7_NR4CvjVDiy9b45SGYdOBBXyk9HXtLIRvePDKhpeHp7uL37Huly-P_8oDe88uxv2-daFvjYWD9Aeem1WLS2ebUQ_KasBD690YZ7-cjYuH3q3VEN2PvGlWxq7wwthr8GEXbS9VF2DvvU_Rn5_Hl-U8WZyfnJaHi6RnnBcJX3Jolryg8eOaUcpUI4EKJutMSE1q1aS5XPI8F02dsSaHCKZNoSWnRc204FP09e1u793NCGGortzobbSsWJbmmRCCy0jJN-rWdLCpem_Wym8qSqrX_KvX_KuP_Ktyfnz2ofh_ywOBXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547566639</pqid></control><display><type>article</type><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</creator><creatorcontrib>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</creatorcontrib><description>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.
The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202100828</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Chemistry ; Conductance ; Ethane ; Gold ; Green's functions ; Molecular orbitals ; molecular wire ; Phosphine ; Phosphines ; Resistance ; Ruthenium ; ruthenium acetylide ; single-molecule conductance ; STM-break junction ; Sulfur ; thioether ; Wire</subject><ispartof>Chemistry : a European journal, 2021-07, Vol.27 (37), p.9666-9673</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6691-5831 ; 0000-0001-7007-9621 ; 0000-0002-0674-660X ; 0000-0003-3093-3779 ; 0000-0003-2869-7674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yashiro, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuya</creatorcontrib><creatorcontrib>Tada, Tomofumi</creatorcontrib><creatorcontrib>Fujii, Shintaro</creatorcontrib><creatorcontrib>Nishino, Tomoaki</creatorcontrib><creatorcontrib>Akita, Munetaka</creatorcontrib><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><title>Chemistry : a European journal</title><description>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.
The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</description><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Conductance</subject><subject>Ethane</subject><subject>Gold</subject><subject>Green's functions</subject><subject>Molecular orbitals</subject><subject>molecular wire</subject><subject>Phosphine</subject><subject>Phosphines</subject><subject>Resistance</subject><subject>Ruthenium</subject><subject>ruthenium acetylide</subject><subject>single-molecule conductance</subject><subject>STM-break junction</subject><subject>Sulfur</subject><subject>thioether</subject><subject>Wire</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9O3DAQxi1UJLYL154t9QJSs_WfxIl7g4iySEuRKFWPkePMbgxZO9iJ0AohceXGC3Doq_EkNQJxmdE3-s18mg-hL5TMKCHsu25hPWOERVGwYgtNaMZownORfUITItM8ERmXO-hzCFeEECk4n6Dnc79S1q1hUF1nND5zHeixUx7_NR4CvjVDiy9b45SGYdOBBXyk9HXtLIRvePDKhpeHp7uL37Huly-P_8oDe88uxv2-daFvjYWD9Aeem1WLS2ebUQ_KasBD690YZ7-cjYuH3q3VEN2PvGlWxq7wwthr8GEXbS9VF2DvvU_Rn5_Hl-U8WZyfnJaHi6RnnBcJX3Jolryg8eOaUcpUI4EKJutMSE1q1aS5XPI8F02dsSaHCKZNoSWnRc204FP09e1u793NCGGortzobbSsWJbmmRCCy0jJN-rWdLCpem_Wym8qSqrX_KvX_KuP_Ktyfnz2ofh_ywOBXg</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Yashiro, Atsushi</creator><creator>Tanaka, Yuya</creator><creator>Tada, Tomofumi</creator><creator>Fujii, Shintaro</creator><creator>Nishino, Tomoaki</creator><creator>Akita, Munetaka</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-6691-5831</orcidid><orcidid>https://orcid.org/0000-0001-7007-9621</orcidid><orcidid>https://orcid.org/0000-0002-0674-660X</orcidid><orcidid>https://orcid.org/0000-0003-3093-3779</orcidid><orcidid>https://orcid.org/0000-0003-2869-7674</orcidid></search><sort><creationdate>20210702</creationdate><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><author>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Conductance</topic><topic>Ethane</topic><topic>Gold</topic><topic>Green's functions</topic><topic>Molecular orbitals</topic><topic>molecular wire</topic><topic>Phosphine</topic><topic>Phosphines</topic><topic>Resistance</topic><topic>Ruthenium</topic><topic>ruthenium acetylide</topic><topic>single-molecule conductance</topic><topic>STM-break junction</topic><topic>Sulfur</topic><topic>thioether</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yashiro, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuya</creatorcontrib><creatorcontrib>Tada, Tomofumi</creatorcontrib><creatorcontrib>Fujii, Shintaro</creatorcontrib><creatorcontrib>Nishino, Tomoaki</creatorcontrib><creatorcontrib>Akita, Munetaka</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yashiro, Atsushi</au><au>Tanaka, Yuya</au><au>Tada, Tomofumi</au><au>Fujii, Shintaro</au><au>Nishino, Tomoaki</au><au>Akita, Munetaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-07-02</date><risdate>2021</risdate><volume>27</volume><issue>37</issue><spage>9666</spage><epage>9673</epage><pages>9666-9673</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.
The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202100828</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6691-5831</orcidid><orcidid>https://orcid.org/0000-0001-7007-9621</orcidid><orcidid>https://orcid.org/0000-0002-0674-660X</orcidid><orcidid>https://orcid.org/0000-0003-3093-3779</orcidid><orcidid>https://orcid.org/0000-0003-2869-7674</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2021-07, Vol.27 (37), p.9666-9673 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_journals_2547566639 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemical synthesis Chemistry Conductance Ethane Gold Green's functions Molecular orbitals molecular wire Phosphine Phosphines Resistance Ruthenium ruthenium acetylide single-molecule conductance STM-break junction Sulfur thioether Wire |
title | Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organometallic%20Molecular%20Wires%20with%20Thioacetylene%20Backbones,%20trans%E2%80%90%7BRS%E2%80%90(C%E2%89%A1C)n%7D2Ru(phosphine)4:%20High%20Conductance%20through%20Non%E2%80%90Aromatic%20Bridging%20Linkers&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yashiro,%20Atsushi&rft.date=2021-07-02&rft.volume=27&rft.issue=37&rft.spage=9666&rft.epage=9673&rft.pages=9666-9673&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202100828&rft_dat=%3Cproquest_wiley%3E2547566639%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547566639&rft_id=info:pmid/&rfr_iscdi=true |