Loading…

Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers

In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2021-07, Vol.27 (37), p.9666-9673
Main Authors: Yashiro, Atsushi, Tanaka, Yuya, Tada, Tomofumi, Fujii, Shintaro, Nishino, Tomoaki, Akita, Munetaka
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9673
container_issue 37
container_start_page 9666
container_title Chemistry : a European journal
container_volume 27
creator Yashiro, Atsushi
Tanaka, Yuya
Tada, Tomofumi
Fujii, Shintaro
Nishino, Tomoaki
Akita, Munetaka
description In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals. The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.
doi_str_mv 10.1002/chem.202100828
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2547566639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547566639</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63</originalsourceid><addsrcrecordid>eNo9kM9O3DAQxi1UJLYL154t9QJSs_WfxIl7g4iySEuRKFWPkePMbgxZO9iJ0AohceXGC3Doq_EkNQJxmdE3-s18mg-hL5TMKCHsu25hPWOERVGwYgtNaMZownORfUITItM8ERmXO-hzCFeEECk4n6Dnc79S1q1hUF1nND5zHeixUx7_NR4CvjVDiy9b45SGYdOBBXyk9HXtLIRvePDKhpeHp7uL37Huly-P_8oDe88uxv2-daFvjYWD9Aeem1WLS2ebUQ_KasBD690YZ7-cjYuH3q3VEN2PvGlWxq7wwthr8GEXbS9VF2DvvU_Rn5_Hl-U8WZyfnJaHi6RnnBcJX3Jolryg8eOaUcpUI4EKJutMSE1q1aS5XPI8F02dsSaHCKZNoSWnRc204FP09e1u793NCGGortzobbSsWJbmmRCCy0jJN-rWdLCpem_Wym8qSqrX_KvX_KuP_Ktyfnz2ofh_ywOBXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547566639</pqid></control><display><type>article</type><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</creator><creatorcontrib>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</creatorcontrib><description>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals. The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202100828</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Chemistry ; Conductance ; Ethane ; Gold ; Green's functions ; Molecular orbitals ; molecular wire ; Phosphine ; Phosphines ; Resistance ; Ruthenium ; ruthenium acetylide ; single-molecule conductance ; STM-break junction ; Sulfur ; thioether ; Wire</subject><ispartof>Chemistry : a European journal, 2021-07, Vol.27 (37), p.9666-9673</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6691-5831 ; 0000-0001-7007-9621 ; 0000-0002-0674-660X ; 0000-0003-3093-3779 ; 0000-0003-2869-7674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yashiro, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuya</creatorcontrib><creatorcontrib>Tada, Tomofumi</creatorcontrib><creatorcontrib>Fujii, Shintaro</creatorcontrib><creatorcontrib>Nishino, Tomoaki</creatorcontrib><creatorcontrib>Akita, Munetaka</creatorcontrib><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><title>Chemistry : a European journal</title><description>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals. The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</description><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Conductance</subject><subject>Ethane</subject><subject>Gold</subject><subject>Green's functions</subject><subject>Molecular orbitals</subject><subject>molecular wire</subject><subject>Phosphine</subject><subject>Phosphines</subject><subject>Resistance</subject><subject>Ruthenium</subject><subject>ruthenium acetylide</subject><subject>single-molecule conductance</subject><subject>STM-break junction</subject><subject>Sulfur</subject><subject>thioether</subject><subject>Wire</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9O3DAQxi1UJLYL154t9QJSs_WfxIl7g4iySEuRKFWPkePMbgxZO9iJ0AohceXGC3Doq_EkNQJxmdE3-s18mg-hL5TMKCHsu25hPWOERVGwYgtNaMZownORfUITItM8ERmXO-hzCFeEECk4n6Dnc79S1q1hUF1nND5zHeixUx7_NR4CvjVDiy9b45SGYdOBBXyk9HXtLIRvePDKhpeHp7uL37Huly-P_8oDe88uxv2-daFvjYWD9Aeem1WLS2ebUQ_KasBD690YZ7-cjYuH3q3VEN2PvGlWxq7wwthr8GEXbS9VF2DvvU_Rn5_Hl-U8WZyfnJaHi6RnnBcJX3Jolryg8eOaUcpUI4EKJutMSE1q1aS5XPI8F02dsSaHCKZNoSWnRc204FP09e1u793NCGGortzobbSsWJbmmRCCy0jJN-rWdLCpem_Wym8qSqrX_KvX_KuP_Ktyfnz2ofh_ywOBXg</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Yashiro, Atsushi</creator><creator>Tanaka, Yuya</creator><creator>Tada, Tomofumi</creator><creator>Fujii, Shintaro</creator><creator>Nishino, Tomoaki</creator><creator>Akita, Munetaka</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-6691-5831</orcidid><orcidid>https://orcid.org/0000-0001-7007-9621</orcidid><orcidid>https://orcid.org/0000-0002-0674-660X</orcidid><orcidid>https://orcid.org/0000-0003-3093-3779</orcidid><orcidid>https://orcid.org/0000-0003-2869-7674</orcidid></search><sort><creationdate>20210702</creationdate><title>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</title><author>Yashiro, Atsushi ; Tanaka, Yuya ; Tada, Tomofumi ; Fujii, Shintaro ; Nishino, Tomoaki ; Akita, Munetaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Conductance</topic><topic>Ethane</topic><topic>Gold</topic><topic>Green's functions</topic><topic>Molecular orbitals</topic><topic>molecular wire</topic><topic>Phosphine</topic><topic>Phosphines</topic><topic>Resistance</topic><topic>Ruthenium</topic><topic>ruthenium acetylide</topic><topic>single-molecule conductance</topic><topic>STM-break junction</topic><topic>Sulfur</topic><topic>thioether</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yashiro, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuya</creatorcontrib><creatorcontrib>Tada, Tomofumi</creatorcontrib><creatorcontrib>Fujii, Shintaro</creatorcontrib><creatorcontrib>Nishino, Tomoaki</creatorcontrib><creatorcontrib>Akita, Munetaka</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yashiro, Atsushi</au><au>Tanaka, Yuya</au><au>Tada, Tomofumi</au><au>Fujii, Shintaro</au><au>Nishino, Tomoaki</au><au>Akita, Munetaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-07-02</date><risdate>2021</risdate><volume>27</volume><issue>37</issue><spage>9666</spage><epage>9673</epage><pages>9666-9673</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>In this work, the design, synthesis, and single‐molecule conductance of ethynyl‐ and butadiynyl‐ruthenium molecular wires with thioether anchor groups [RS=n‐C6H13S, p‐tert‐Bu−C6H4S), trans‐{RS−(C≡C)n}2Ru(dppe)2 (n=1 (1R), 2 (2R); dppe: 1,2‐bis(diphenylphosphino)ethane) and trans‐(n‐C6H13S−C≡C)2Ru{P(OMe)3}4 3hex] are reported. Scanning tunneling microscope break‐junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans‐{p‐MeS−C6H4‐(C≡C)n}2Ru(phosphine)4 4n (n=1, 2) and trans‐(Th−C≡C)2Ru(phosphine)4 5 (Th=3‐thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R, trans‐{Au−RS−(C≡C)2}2Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans‐{Au−(C≡C)3}2Ru(dppe)2 63. The DFT non‐equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals. The scanning tunneling microscope break‐junction study of thioacetylene ruthenium molecular wires exhibited single‐molecule conductance higher than that of the related organometallic wires indicating the superiority of the acetylene bridging linkers as well as the thioether coordination anchor groups. The DFT non‐equilibrium Green's function study supports the high conductance of the thioacetylene molecular wires, for which HOMOs are the dominant conductance pathways.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202100828</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6691-5831</orcidid><orcidid>https://orcid.org/0000-0001-7007-9621</orcidid><orcidid>https://orcid.org/0000-0002-0674-660X</orcidid><orcidid>https://orcid.org/0000-0003-3093-3779</orcidid><orcidid>https://orcid.org/0000-0003-2869-7674</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-07, Vol.27 (37), p.9666-9673
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_2547566639
source Wiley-Blackwell Read & Publish Collection
subjects Chemical synthesis
Chemistry
Conductance
Ethane
Gold
Green's functions
Molecular orbitals
molecular wire
Phosphine
Phosphines
Resistance
Ruthenium
ruthenium acetylide
single-molecule conductance
STM-break junction
Sulfur
thioether
Wire
title Organometallic Molecular Wires with Thioacetylene Backbones, trans‐{RS‐(C≡C)n}2Ru(phosphine)4: High Conductance through Non‐Aromatic Bridging Linkers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organometallic%20Molecular%20Wires%20with%20Thioacetylene%20Backbones,%20trans%E2%80%90%7BRS%E2%80%90(C%E2%89%A1C)n%7D2Ru(phosphine)4:%20High%20Conductance%20through%20Non%E2%80%90Aromatic%20Bridging%20Linkers&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yashiro,%20Atsushi&rft.date=2021-07-02&rft.volume=27&rft.issue=37&rft.spage=9666&rft.epage=9673&rft.pages=9666-9673&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202100828&rft_dat=%3Cproquest_wiley%3E2547566639%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2338-3f3edf381152b2112ad9e1629b569c0bad479f3776db52d7e1154d8c9318b2c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547566639&rft_id=info:pmid/&rfr_iscdi=true