Loading…

Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate

A palm waste kernel shell biomass was converted into bio-based sulphonated activated carbon and further used for preparation of a sulphated zirconium-doped activated catalyst (Zr-AC-HSO3) by wet impregnation method. The structural, physicochemical, morphological, textural, and thermal characteristic...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2019-12, Vol.9 (12), p.1029
Main Authors: Rashid, Umer, Soltani, Soroush, Yaw Choong, Thomas Shean, Nehdi, Imededdine Arbi, Ahmad, Junaid, Ngamcharussrivichai, Chawalit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A palm waste kernel shell biomass was converted into bio-based sulphonated activated carbon and further used for preparation of a sulphated zirconium-doped activated catalyst (Zr-AC-HSO3) by wet impregnation method. The structural, physicochemical, morphological, textural, and thermal characteristics of the synthesized Zr-AC-HSO3 catalyst were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, temperature-programmed desorption of ammonia (TPD-NH3), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The catalytic activity of the 20 wt% Zr-AC-HSO3 catalyst was further evaluated for esterification of palm fatty acid distillate (PFAD). This study achieved a maximum fatty acid methyl ester (FAME) yield of 94.3% and free fatty acid (FFA) conversion of 96.1% via the esterification over 20 wt% Zr-AC-HSO3 using 3 wt% catalyst concentration, 15:1 methanol:PFAD molar ratio at 75 °C for 3 h. The experiments to test for reusability showed that the spent catalyst was stable for five successive reaction cycles, with a FFA conversion of 80% in the fifth cycle, without additional treatment. The critical fuel features of the synthesized PFAD methyl ester were determined and were within the range of EN14214 and ASTM D6751 standards.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal9121029