Loading…

A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications

This article proposes a dual voltage/current ( V/C ) inductance controller, which has good impedance tracking capability without any high-voltage stress problems. Besides, the proposed dual-mode phase-locked loop (D-PLL) technique can detect the phase difference between voltage and current of the an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2021-10, Vol.36 (10), p.11774-11784
Main Authors: Chen, Hsuan-Yu, Chung, Kai-Cheng, Huang, Jia-Rui, Chen, Shao-Qi, Chen, Ke-Horng, Lin, Ying-Hsi, Lin, Shian-Ru, Tsai, Tsung-Yen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3
cites cdi_FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3
container_end_page 11784
container_issue 10
container_start_page 11774
container_title IEEE transactions on power electronics
container_volume 36
creator Chen, Hsuan-Yu
Chung, Kai-Cheng
Huang, Jia-Rui
Chen, Shao-Qi
Chen, Ke-Horng
Lin, Ying-Hsi
Lin, Shian-Ru
Tsai, Tsung-Yen
description This article proposes a dual voltage/current ( V/C ) inductance controller, which has good impedance tracking capability without any high-voltage stress problems. Besides, the proposed dual-mode phase-locked loop (D-PLL) technique can detect the phase difference between voltage and current of the antenna by fast tracking PLL and the accuracy-improved PLL for inductive and capacitive loads, thereby improving efficiency. Therefore, the 5G small base station on the receiver side (RX) can receive 27.8 W of power with 50% efficiency when the wall thickness to the transmitter side (TX) is 25.2 cm. In the case where the distance between TX and RX is close to zero, 50 W higher power with 90% efficiency can be achieved. Accordingly, the efficiency of resistive and inductive loads can be increased by 13% and 41%, respectively.
doi_str_mv 10.1109/TPEL.2021.3069279
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2547648305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9388915</ieee_id><sourcerecordid>2547648305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3</originalsourceid><addsrcrecordid>eNo9kc1u1DAQxy0EEkvhARCXkRDHbO04Tuxj2S5tpUVU7ALHaOpMuqmy9mI7QsvT9D1665M1qxROI83_YzT6MfZe8LkQ3Jxurperec5zMZe8NHllXrCZMIXIuODVSzbjWqtMGyNfszcx3nEuCsXFjD2cQTmv9OP918u_gK4Bwz_Bsm0725GzB_hO0Tt0CX51gXqKEa79HwqwHvb7_gAbslvX_R5o1NMW0pbgfMAefvo-4S2dLoYQaExvBte5W7hyzWATOkuQ_L8OyR_v7Q7WWx9Sdt7FSf-MkWCdMHXeRWh9AHUBC7_bjU122r5lr1rsI717nifsx5flZnGZrb5dXC3OVpnNjUxZY40sEY1oRYtaSaWLFiuhsGks3dyg0FRySRxt2SppUVSKU4m6NKKxGht5wj5Ovfvgx1djqu_8ENx4ss5VUZWFllyNLjG5bPAxBmrrfeh2GA614PWRUX1kVB8Z1c-MxsyHKdMR0X-_kVoboeQTSSOQxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547648305</pqid></control><display><type>article</type><title>A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Hsuan-Yu ; Chung, Kai-Cheng ; Huang, Jia-Rui ; Chen, Shao-Qi ; Chen, Ke-Horng ; Lin, Ying-Hsi ; Lin, Shian-Ru ; Tsai, Tsung-Yen</creator><creatorcontrib>Chen, Hsuan-Yu ; Chung, Kai-Cheng ; Huang, Jia-Rui ; Chen, Shao-Qi ; Chen, Ke-Horng ; Lin, Ying-Hsi ; Lin, Shian-Ru ; Tsai, Tsung-Yen</creatorcontrib><description>This article proposes a dual voltage/current ( V/C ) inductance controller, which has good impedance tracking capability without any high-voltage stress problems. Besides, the proposed dual-mode phase-locked loop (D-PLL) technique can detect the phase difference between voltage and current of the antenna by fast tracking PLL and the accuracy-improved PLL for inductive and capacitive loads, thereby improving efficiency. Therefore, the 5G small base station on the receiver side (RX) can receive 27.8 W of power with 50% efficiency when the wall thickness to the transmitter side (TX) is 25.2 cm. In the case where the distance between TX and RX is close to zero, 50 W higher power with 90% efficiency can be achieved. Accordingly, the efficiency of resistive and inductive loads can be increased by 13% and 41%, respectively.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3069279</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Class-E power amplifier (PA) ; dual voltage/current (V/C) inductance controller ; Efficiency ; Gallium nitride ; gallium nitride (GaN) ; Inductance ; inductance tuning technique ; Inductors ; phase difference (PD) tracking technique ; Phase locked loops ; Switches ; Tracking ; Tuning ; Wall thickness ; wireless power supply (WPS) ; Zero voltage switching ; zero voltage switching (ZVS)</subject><ispartof>IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11774-11784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3</citedby><cites>FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3</cites><orcidid>0000-0001-9589-6521 ; 0000-0001-5052-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9388915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Chen, Hsuan-Yu</creatorcontrib><creatorcontrib>Chung, Kai-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Rui</creatorcontrib><creatorcontrib>Chen, Shao-Qi</creatorcontrib><creatorcontrib>Chen, Ke-Horng</creatorcontrib><creatorcontrib>Lin, Ying-Hsi</creatorcontrib><creatorcontrib>Lin, Shian-Ru</creatorcontrib><creatorcontrib>Tsai, Tsung-Yen</creatorcontrib><title>A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article proposes a dual voltage/current ( V/C ) inductance controller, which has good impedance tracking capability without any high-voltage stress problems. Besides, the proposed dual-mode phase-locked loop (D-PLL) technique can detect the phase difference between voltage and current of the antenna by fast tracking PLL and the accuracy-improved PLL for inductive and capacitive loads, thereby improving efficiency. Therefore, the 5G small base station on the receiver side (RX) can receive 27.8 W of power with 50% efficiency when the wall thickness to the transmitter side (TX) is 25.2 cm. In the case where the distance between TX and RX is close to zero, 50 W higher power with 90% efficiency can be achieved. Accordingly, the efficiency of resistive and inductive loads can be increased by 13% and 41%, respectively.</description><subject>Capacitors</subject><subject>Class-E power amplifier (PA)</subject><subject>dual voltage/current (V/C) inductance controller</subject><subject>Efficiency</subject><subject>Gallium nitride</subject><subject>gallium nitride (GaN)</subject><subject>Inductance</subject><subject>inductance tuning technique</subject><subject>Inductors</subject><subject>phase difference (PD) tracking technique</subject><subject>Phase locked loops</subject><subject>Switches</subject><subject>Tracking</subject><subject>Tuning</subject><subject>Wall thickness</subject><subject>wireless power supply (WPS)</subject><subject>Zero voltage switching</subject><subject>zero voltage switching (ZVS)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kc1u1DAQxy0EEkvhARCXkRDHbO04Tuxj2S5tpUVU7ALHaOpMuqmy9mI7QsvT9D1665M1qxROI83_YzT6MfZe8LkQ3Jxurperec5zMZe8NHllXrCZMIXIuODVSzbjWqtMGyNfszcx3nEuCsXFjD2cQTmv9OP918u_gK4Bwz_Bsm0725GzB_hO0Tt0CX51gXqKEa79HwqwHvb7_gAbslvX_R5o1NMW0pbgfMAefvo-4S2dLoYQaExvBte5W7hyzWATOkuQ_L8OyR_v7Q7WWx9Sdt7FSf-MkWCdMHXeRWh9AHUBC7_bjU122r5lr1rsI717nifsx5flZnGZrb5dXC3OVpnNjUxZY40sEY1oRYtaSaWLFiuhsGks3dyg0FRySRxt2SppUVSKU4m6NKKxGht5wj5Ovfvgx1djqu_8ENx4ss5VUZWFllyNLjG5bPAxBmrrfeh2GA614PWRUX1kVB8Z1c-MxsyHKdMR0X-_kVoboeQTSSOQxA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Hsuan-Yu</creator><creator>Chung, Kai-Cheng</creator><creator>Huang, Jia-Rui</creator><creator>Chen, Shao-Qi</creator><creator>Chen, Ke-Horng</creator><creator>Lin, Ying-Hsi</creator><creator>Lin, Shian-Ru</creator><creator>Tsai, Tsung-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9589-6521</orcidid><orcidid>https://orcid.org/0000-0001-5052-6869</orcidid></search><sort><creationdate>20211001</creationdate><title>A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications</title><author>Chen, Hsuan-Yu ; Chung, Kai-Cheng ; Huang, Jia-Rui ; Chen, Shao-Qi ; Chen, Ke-Horng ; Lin, Ying-Hsi ; Lin, Shian-Ru ; Tsai, Tsung-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitors</topic><topic>Class-E power amplifier (PA)</topic><topic>dual voltage/current (V/C) inductance controller</topic><topic>Efficiency</topic><topic>Gallium nitride</topic><topic>gallium nitride (GaN)</topic><topic>Inductance</topic><topic>inductance tuning technique</topic><topic>Inductors</topic><topic>phase difference (PD) tracking technique</topic><topic>Phase locked loops</topic><topic>Switches</topic><topic>Tracking</topic><topic>Tuning</topic><topic>Wall thickness</topic><topic>wireless power supply (WPS)</topic><topic>Zero voltage switching</topic><topic>zero voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hsuan-Yu</creatorcontrib><creatorcontrib>Chung, Kai-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Rui</creatorcontrib><creatorcontrib>Chen, Shao-Qi</creatorcontrib><creatorcontrib>Chen, Ke-Horng</creatorcontrib><creatorcontrib>Lin, Ying-Hsi</creatorcontrib><creatorcontrib>Lin, Shian-Ru</creatorcontrib><creatorcontrib>Tsai, Tsung-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hsuan-Yu</au><au>Chung, Kai-Cheng</au><au>Huang, Jia-Rui</au><au>Chen, Shao-Qi</au><au>Chen, Ke-Horng</au><au>Lin, Ying-Hsi</au><au>Lin, Shian-Ru</au><au>Tsai, Tsung-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>11774</spage><epage>11784</epage><pages>11774-11784</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article proposes a dual voltage/current ( V/C ) inductance controller, which has good impedance tracking capability without any high-voltage stress problems. Besides, the proposed dual-mode phase-locked loop (D-PLL) technique can detect the phase difference between voltage and current of the antenna by fast tracking PLL and the accuracy-improved PLL for inductive and capacitive loads, thereby improving efficiency. Therefore, the 5G small base station on the receiver side (RX) can receive 27.8 W of power with 50% efficiency when the wall thickness to the transmitter side (TX) is 25.2 cm. In the case where the distance between TX and RX is close to zero, 50 W higher power with 90% efficiency can be achieved. Accordingly, the efficiency of resistive and inductive loads can be increased by 13% and 41%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3069279</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9589-6521</orcidid><orcidid>https://orcid.org/0000-0001-5052-6869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11774-11784
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2547648305
source IEEE Electronic Library (IEL) Journals
subjects Capacitors
Class-E power amplifier (PA)
dual voltage/current (V/C) inductance controller
Efficiency
Gallium nitride
gallium nitride (GaN)
Inductance
inductance tuning technique
Inductors
phase difference (PD) tracking technique
Phase locked loops
Switches
Tracking
Tuning
Wall thickness
wireless power supply (WPS)
Zero voltage switching
zero voltage switching (ZVS)
title A 6.78 MHz and 90% Efficiency Resonant Wireless Power Supply Technique With the Dual Voltage/Current Tuning Inductance to Supply 30 cm Short-Distance Base Stations for 5G Communications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%206.78%C2%A0MHz%20and%2090%25%20Efficiency%20Resonant%20Wireless%20Power%20Supply%20Technique%20With%20the%20Dual%20Voltage/Current%20Tuning%20Inductance%20to%20Supply%2030%C2%A0cm%20Short-Distance%20Base%20Stations%20for%205G%20Communications&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Chen,%20Hsuan-Yu&rft.date=2021-10-01&rft.volume=36&rft.issue=10&rft.spage=11774&rft.epage=11784&rft.pages=11774-11784&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3069279&rft_dat=%3Cproquest_cross%3E2547648305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-dc936aa91f1fa853584fa715addcebba18e603e0ac6f53ca1750e6a8691dc8ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547648305&rft_id=info:pmid/&rft_ieee_id=9388915&rfr_iscdi=true