Loading…
Productivity, Portability, Performance: Data-Centric Python
Python has become the de facto language for scientific computing. Programming in Python is highly productive, mainly due to its rich science-oriented software ecosystem built around the NumPy module. As a result, the demand for Python support in High Performance Computing (HPC) has skyrocketed. Howe...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Python has become the de facto language for scientific computing. Programming in Python is highly productive, mainly due to its rich science-oriented software ecosystem built around the NumPy module. As a result, the demand for Python support in High Performance Computing (HPC) has skyrocketed. However, the Python language itself does not necessarily offer high performance. In this work, we present a workflow that retains Python's high productivity while achieving portable performance across different architectures. The workflow's key features are HPC-oriented language extensions and a set of automatic optimizations powered by a data-centric intermediate representation. We show performance results and scaling across CPU, GPU, FPGA, and the Piz Daint supercomputer (up to 23,328 cores), with 2.47x and 3.75x speedups over previous-best solutions, first-ever Xilinx and Intel FPGA results of annotated Python, and up to 93.16% scaling efficiency on 512 nodes. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2107.00555 |