Loading…
Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries
Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions b...
Saved in:
Published in: | Advanced functional materials 2021-07, Vol.31 (27), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 27 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Neale, Alex R. Sharpe, Ryan Yeandel, Stephen R. Yen, Chih‐Han Luzyanin, Konstantin V. Goddard, Pooja Petrucco, Enrico A. Hardwick, Laurence J. |
description | Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies >94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells.
The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings. |
doi_str_mv | 10.1002/adfm.202010627 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2547790958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547790958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhYMoWKtb1wOuo_OTZJJlf7WQUqGK7oZJclOnTCftZKJk58I38A19ElMrXZ17D4dz4PO8a4JvCcb0Thbl5pZiigmOKD_xeiQikc8wjU-PN3k99y7qeo0x4ZwFPe9rDLVaGfQordyAA1ujsrJoVhmVo1TtGlX8fH7PKw15o6VFy0q_g3FoqMEUaNLZzla6dVAjV6GJkZkGtHR_kio0Byc1GrW5VmaFXpR7U6bzu8oFRUPpukEF9aV3Vkpdw9W_9r3n6eRp9OCni_vZaJD6W8oY9-Oc5YyHUsY55WGWBSHBGSaEsSDKZVnGBLKC0hh4kSchyTimEcFFApInEQXK-t7NoXdrq10DtRPrqrGmmxQ0DDhPcBLGXSo5pD6UhlZsrdpI2wqCxR6z2GMWR8xiMJ7Ojx_7BWn7dbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547790958</pqid></control><display><type>article</type><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</creator><creatorcontrib>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</creatorcontrib><description>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies >94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells.
The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010627</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decomposition reactions ; Design parameters ; Dimethyl sulfoxide ; Electrolytes ; Electrolytic cells ; Formulations ; highly concentrated electrolytes ; Ionic liquids ; Ions ; Lithium ; lithium metal electrodes ; lithium–oxygen batteries ; Materials science ; Solvation ; Solvents</subject><ispartof>Advanced functional materials, 2021-07, Vol.31 (27), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7675-5432 ; 0000-0001-8796-685X ; 0000-0002-6977-1677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Neale, Alex R.</creatorcontrib><creatorcontrib>Sharpe, Ryan</creatorcontrib><creatorcontrib>Yeandel, Stephen R.</creatorcontrib><creatorcontrib>Yen, Chih‐Han</creatorcontrib><creatorcontrib>Luzyanin, Konstantin V.</creatorcontrib><creatorcontrib>Goddard, Pooja</creatorcontrib><creatorcontrib>Petrucco, Enrico A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><title>Advanced functional materials</title><description>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies >94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells.
The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</description><subject>Decomposition reactions</subject><subject>Design parameters</subject><subject>Dimethyl sulfoxide</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Formulations</subject><subject>highly concentrated electrolytes</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>lithium metal electrodes</subject><subject>lithium–oxygen batteries</subject><subject>Materials science</subject><subject>Solvation</subject><subject>Solvents</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kM1Kw0AUhYMoWKtb1wOuo_OTZJJlf7WQUqGK7oZJclOnTCftZKJk58I38A19ElMrXZ17D4dz4PO8a4JvCcb0Thbl5pZiigmOKD_xeiQikc8wjU-PN3k99y7qeo0x4ZwFPe9rDLVaGfQordyAA1ujsrJoVhmVo1TtGlX8fH7PKw15o6VFy0q_g3FoqMEUaNLZzla6dVAjV6GJkZkGtHR_kio0Byc1GrW5VmaFXpR7U6bzu8oFRUPpukEF9aV3Vkpdw9W_9r3n6eRp9OCni_vZaJD6W8oY9-Oc5YyHUsY55WGWBSHBGSaEsSDKZVnGBLKC0hh4kSchyTimEcFFApInEQXK-t7NoXdrq10DtRPrqrGmmxQ0DDhPcBLGXSo5pD6UhlZsrdpI2wqCxR6z2GMWR8xiMJ7Ojx_7BWn7dbc</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Neale, Alex R.</creator><creator>Sharpe, Ryan</creator><creator>Yeandel, Stephen R.</creator><creator>Yen, Chih‐Han</creator><creator>Luzyanin, Konstantin V.</creator><creator>Goddard, Pooja</creator><creator>Petrucco, Enrico A.</creator><creator>Hardwick, Laurence J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7675-5432</orcidid><orcidid>https://orcid.org/0000-0001-8796-685X</orcidid><orcidid>https://orcid.org/0000-0002-6977-1677</orcidid></search><sort><creationdate>20210701</creationdate><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><author>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decomposition reactions</topic><topic>Design parameters</topic><topic>Dimethyl sulfoxide</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Formulations</topic><topic>highly concentrated electrolytes</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>lithium metal electrodes</topic><topic>lithium–oxygen batteries</topic><topic>Materials science</topic><topic>Solvation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neale, Alex R.</creatorcontrib><creatorcontrib>Sharpe, Ryan</creatorcontrib><creatorcontrib>Yeandel, Stephen R.</creatorcontrib><creatorcontrib>Yen, Chih‐Han</creatorcontrib><creatorcontrib>Luzyanin, Konstantin V.</creatorcontrib><creatorcontrib>Goddard, Pooja</creatorcontrib><creatorcontrib>Petrucco, Enrico A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neale, Alex R.</au><au>Sharpe, Ryan</au><au>Yeandel, Stephen R.</au><au>Yen, Chih‐Han</au><au>Luzyanin, Konstantin V.</au><au>Goddard, Pooja</au><au>Petrucco, Enrico A.</au><au>Hardwick, Laurence J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>31</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies >94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells.
The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202010627</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7675-5432</orcidid><orcidid>https://orcid.org/0000-0001-8796-685X</orcidid><orcidid>https://orcid.org/0000-0002-6977-1677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-07, Vol.31 (27), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2547790958 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Decomposition reactions Design parameters Dimethyl sulfoxide Electrolytes Electrolytic cells Formulations highly concentrated electrolytes Ionic liquids Ions Lithium lithium metal electrodes lithium–oxygen batteries Materials science Solvation Solvents |
title | Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Parameters%20for%20Ionic%20Liquid%E2%80%93Molecular%20Solvent%20Blend%20Electrolytes%20to%20Enable%20Stable%20Li%20Metal%20Cycling%20Within%20Li%E2%80%93O2%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Neale,%20Alex%20R.&rft.date=2021-07-01&rft.volume=31&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010627&rft_dat=%3Cproquest_wiley%3E2547790958%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547790958&rft_id=info:pmid/&rfr_iscdi=true |