Loading…

Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries

Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions b...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-07, Vol.31 (27), p.n/a
Main Authors: Neale, Alex R., Sharpe, Ryan, Yeandel, Stephen R., Yen, Chih‐Han, Luzyanin, Konstantin V., Goddard, Pooja, Petrucco, Enrico A., Hardwick, Laurence J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 27
container_start_page
container_title Advanced functional materials
container_volume 31
creator Neale, Alex R.
Sharpe, Ryan
Yeandel, Stephen R.
Yen, Chih‐Han
Luzyanin, Konstantin V.
Goddard, Pooja
Petrucco, Enrico A.
Hardwick, Laurence J.
description Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies >94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells. The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.
doi_str_mv 10.1002/adfm.202010627
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2547790958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547790958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhYMoWKtb1wOuo_OTZJJlf7WQUqGK7oZJclOnTCftZKJk58I38A19ElMrXZ17D4dz4PO8a4JvCcb0Thbl5pZiigmOKD_xeiQikc8wjU-PN3k99y7qeo0x4ZwFPe9rDLVaGfQordyAA1ujsrJoVhmVo1TtGlX8fH7PKw15o6VFy0q_g3FoqMEUaNLZzla6dVAjV6GJkZkGtHR_kio0Byc1GrW5VmaFXpR7U6bzu8oFRUPpukEF9aV3Vkpdw9W_9r3n6eRp9OCni_vZaJD6W8oY9-Oc5YyHUsY55WGWBSHBGSaEsSDKZVnGBLKC0hh4kSchyTimEcFFApInEQXK-t7NoXdrq10DtRPrqrGmmxQ0DDhPcBLGXSo5pD6UhlZsrdpI2wqCxR6z2GMWR8xiMJ7Ojx_7BWn7dbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547790958</pqid></control><display><type>article</type><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</creator><creatorcontrib>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</creatorcontrib><description>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies &gt;94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells. The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010627</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decomposition reactions ; Design parameters ; Dimethyl sulfoxide ; Electrolytes ; Electrolytic cells ; Formulations ; highly concentrated electrolytes ; Ionic liquids ; Ions ; Lithium ; lithium metal electrodes ; lithium–oxygen batteries ; Materials science ; Solvation ; Solvents</subject><ispartof>Advanced functional materials, 2021-07, Vol.31 (27), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7675-5432 ; 0000-0001-8796-685X ; 0000-0002-6977-1677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Neale, Alex R.</creatorcontrib><creatorcontrib>Sharpe, Ryan</creatorcontrib><creatorcontrib>Yeandel, Stephen R.</creatorcontrib><creatorcontrib>Yen, Chih‐Han</creatorcontrib><creatorcontrib>Luzyanin, Konstantin V.</creatorcontrib><creatorcontrib>Goddard, Pooja</creatorcontrib><creatorcontrib>Petrucco, Enrico A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><title>Advanced functional materials</title><description>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies &gt;94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells. The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</description><subject>Decomposition reactions</subject><subject>Design parameters</subject><subject>Dimethyl sulfoxide</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Formulations</subject><subject>highly concentrated electrolytes</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>lithium metal electrodes</subject><subject>lithium–oxygen batteries</subject><subject>Materials science</subject><subject>Solvation</subject><subject>Solvents</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kM1Kw0AUhYMoWKtb1wOuo_OTZJJlf7WQUqGK7oZJclOnTCftZKJk58I38A19ElMrXZ17D4dz4PO8a4JvCcb0Thbl5pZiigmOKD_xeiQikc8wjU-PN3k99y7qeo0x4ZwFPe9rDLVaGfQordyAA1ujsrJoVhmVo1TtGlX8fH7PKw15o6VFy0q_g3FoqMEUaNLZzla6dVAjV6GJkZkGtHR_kio0Byc1GrW5VmaFXpR7U6bzu8oFRUPpukEF9aV3Vkpdw9W_9r3n6eRp9OCni_vZaJD6W8oY9-Oc5YyHUsY55WGWBSHBGSaEsSDKZVnGBLKC0hh4kSchyTimEcFFApInEQXK-t7NoXdrq10DtRPrqrGmmxQ0DDhPcBLGXSo5pD6UhlZsrdpI2wqCxR6z2GMWR8xiMJ7Ojx_7BWn7dbc</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Neale, Alex R.</creator><creator>Sharpe, Ryan</creator><creator>Yeandel, Stephen R.</creator><creator>Yen, Chih‐Han</creator><creator>Luzyanin, Konstantin V.</creator><creator>Goddard, Pooja</creator><creator>Petrucco, Enrico A.</creator><creator>Hardwick, Laurence J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7675-5432</orcidid><orcidid>https://orcid.org/0000-0001-8796-685X</orcidid><orcidid>https://orcid.org/0000-0002-6977-1677</orcidid></search><sort><creationdate>20210701</creationdate><title>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</title><author>Neale, Alex R. ; Sharpe, Ryan ; Yeandel, Stephen R. ; Yen, Chih‐Han ; Luzyanin, Konstantin V. ; Goddard, Pooja ; Petrucco, Enrico A. ; Hardwick, Laurence J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decomposition reactions</topic><topic>Design parameters</topic><topic>Dimethyl sulfoxide</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Formulations</topic><topic>highly concentrated electrolytes</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>lithium metal electrodes</topic><topic>lithium–oxygen batteries</topic><topic>Materials science</topic><topic>Solvation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neale, Alex R.</creatorcontrib><creatorcontrib>Sharpe, Ryan</creatorcontrib><creatorcontrib>Yeandel, Stephen R.</creatorcontrib><creatorcontrib>Yen, Chih‐Han</creatorcontrib><creatorcontrib>Luzyanin, Konstantin V.</creatorcontrib><creatorcontrib>Goddard, Pooja</creatorcontrib><creatorcontrib>Petrucco, Enrico A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neale, Alex R.</au><au>Sharpe, Ryan</au><au>Yeandel, Stephen R.</au><au>Yen, Chih‐Han</au><au>Luzyanin, Konstantin V.</au><au>Goddard, Pooja</au><au>Petrucco, Enrico A.</au><au>Hardwick, Laurence J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>31</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Effective utilization of Li‐metal electrodes is vital for maximizing the specific energy of lithium–oxygen (Li–O2) batteries. Many conventional electrolytes that support Li–O2 cathode processes (e.g., dimethyl sulfoxide, DMSO) are incompatible with Li‐metal. Here, a wide range of ternary solutions based on solvent, salt, and ionic liquid (IL) are explored to understand how formulations may be tailored to enhance stability and performance of DMSO at Li‐metal electrodes. The optimized formulations therein facilitate stable Li plating/stripping performances, Columbic efficiencies &gt;94%, and improved performance in Li–O2 full cells. Characterization of Li surfaces reveals the suppression of dendritic deposition and corrosion and the modulation of decomposition reactions at the interface within optimized formulations. These observations are correlated with spectroscopic characterization and simulation of local solvation environments, indicating the persistent importance of DMSO–Li+‐cation interactions. Therein, stabilization remains dependent on important molar ratios in solution and the 4:1 solvent‐salt ratio, corresponding to ideal coordination spheres in these systems, is revealed as critical for these ternary formulations. Importantly, introducing this stable, non‐volatile IL has negligible disrupting effects on the critical stabilizing interactions between Li+ and DMSO and, thus, may be carefully introduced to tailor other key electrolyte properties for Li–O2 cells. The stability of dimethyl sulfoxide (DMSO) electrolytes for Li‐metal cycling and full Li–O2 cells is optimized through formulation of ternary blends with ionic liquid and Li‐salt. The DMSO–Li+ solvation interactions, probed via spectroscopy and simulation, are responsible for impeding reductive decomposition of DMSO at high concentrations, while the ionic liquid cation only spectates on the stabilization proceedings.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202010627</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7675-5432</orcidid><orcidid>https://orcid.org/0000-0001-8796-685X</orcidid><orcidid>https://orcid.org/0000-0002-6977-1677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-07, Vol.31 (27), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2547790958
source Wiley-Blackwell Read & Publish Collection
subjects Decomposition reactions
Design parameters
Dimethyl sulfoxide
Electrolytes
Electrolytic cells
Formulations
highly concentrated electrolytes
Ionic liquids
Ions
Lithium
lithium metal electrodes
lithium–oxygen batteries
Materials science
Solvation
Solvents
title Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O2 Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Parameters%20for%20Ionic%20Liquid%E2%80%93Molecular%20Solvent%20Blend%20Electrolytes%20to%20Enable%20Stable%20Li%20Metal%20Cycling%20Within%20Li%E2%80%93O2%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Neale,%20Alex%20R.&rft.date=2021-07-01&rft.volume=31&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010627&rft_dat=%3Cproquest_wiley%3E2547790958%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-8c3c375aa8c275bb4510b0113346caff81ebd228e7dc951b702610d9ea7962e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547790958&rft_id=info:pmid/&rfr_iscdi=true