Loading…
Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?
We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our cons...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Dai, Zhifeng Chang, Xiaoming |
description | We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust. |
doi_str_mv | 10.1155/2021/9911986 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548294035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548294035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eU2Tpl5EytTBYDIneItZmm6ZW-qSlOG3t2M7e3rv8OP_eH-EroHcAzA2SEkKg6IAKAQ_QT1gnCYMsvy020maJZDSz3N0EcKKdJKB6KGvN28qq6N1C_weG_2Npya23uGdjUs81I1rNlbjsnEhemVdfMClcnjkovHbVvlo1wZPlVsYPPOt0yoaHJcGT9q4tsaHx0t0Vqt1MFfH2Ucfz8NZ-ZqMJy-j8mmcaCpITKjK1JzkmQENnHJeVCRXc8GgruvMqFpwXhWi4lRoxVk1ZzxnmoKqmdBUFynto5tD7o9vtq0JUa6a7o_upExZJtIiI5R16u6gtG9C8KaWP95ulP-VQOS-Q7nvUB477PjtgS-tq9TO_q__ADqBcT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548294035</pqid></control><display><type>article</type><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Dai, Zhifeng ; Chang, Xiaoming</creator><contributor>de Oliveira Correia, José António Fonseca ; José António Fonseca de Oliveira Correia</contributor><creatorcontrib>Dai, Zhifeng ; Chang, Xiaoming ; de Oliveira Correia, José António Fonseca ; José António Fonseca de Oliveira Correia</creatorcontrib><description>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9911986</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Constraint modelling ; Economic analysis ; Investments ; Model accuracy ; Outliers (statistics) ; Performance prediction ; Portfolio performance ; Risk aversion ; Variables</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Zhifeng Dai and Xiaoming Chang.</rights><rights>Copyright © 2021 Zhifeng Dai and Xiaoming Chang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</citedby><cites>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</cites><orcidid>0000-0002-7912-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548294035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548294035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>de Oliveira Correia, José António Fonseca</contributor><contributor>José António Fonseca de Oliveira Correia</contributor><creatorcontrib>Dai, Zhifeng</creatorcontrib><creatorcontrib>Chang, Xiaoming</creatorcontrib><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><title>Mathematical problems in engineering</title><description>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</description><subject>Constraint modelling</subject><subject>Economic analysis</subject><subject>Investments</subject><subject>Model accuracy</subject><subject>Outliers (statistics)</subject><subject>Performance prediction</subject><subject>Portfolio performance</subject><subject>Risk aversion</subject><subject>Variables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eU2Tpl5EytTBYDIneItZmm6ZW-qSlOG3t2M7e3rv8OP_eH-EroHcAzA2SEkKg6IAKAQ_QT1gnCYMsvy020maJZDSz3N0EcKKdJKB6KGvN28qq6N1C_weG_2Npya23uGdjUs81I1rNlbjsnEhemVdfMClcnjkovHbVvlo1wZPlVsYPPOt0yoaHJcGT9q4tsaHx0t0Vqt1MFfH2Ucfz8NZ-ZqMJy-j8mmcaCpITKjK1JzkmQENnHJeVCRXc8GgruvMqFpwXhWi4lRoxVk1ZzxnmoKqmdBUFynto5tD7o9vtq0JUa6a7o_upExZJtIiI5R16u6gtG9C8KaWP95ulP-VQOS-Q7nvUB477PjtgS-tq9TO_q__ADqBcT8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dai, Zhifeng</creator><creator>Chang, Xiaoming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7912-1280</orcidid></search><sort><creationdate>2021</creationdate><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><author>Dai, Zhifeng ; Chang, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constraint modelling</topic><topic>Economic analysis</topic><topic>Investments</topic><topic>Model accuracy</topic><topic>Outliers (statistics)</topic><topic>Performance prediction</topic><topic>Portfolio performance</topic><topic>Risk aversion</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhifeng</creatorcontrib><creatorcontrib>Chang, Xiaoming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhifeng</au><au>Chang, Xiaoming</au><au>de Oliveira Correia, José António Fonseca</au><au>José António Fonseca de Oliveira Correia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9911986</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7912-1280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2548294035 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access |
subjects | Constraint modelling Economic analysis Investments Model accuracy Outliers (statistics) Performance prediction Portfolio performance Risk aversion Variables |
title | Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Stock%20Return%20with%20Economic%20Constraint:%20Can%20Interquartile%20Range%20Truncate%20the%20Outliers?&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Dai,%20Zhifeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9911986&rft_dat=%3Cproquest_cross%3E2548294035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548294035&rft_id=info:pmid/&rfr_iscdi=true |