Loading…

Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?

We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our cons...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021, Vol.2021, p.1-12
Main Authors: Dai, Zhifeng, Chang, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923
cites cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923
container_end_page 12
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Dai, Zhifeng
Chang, Xiaoming
description We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.
doi_str_mv 10.1155/2021/9911986
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548294035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548294035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eU2Tpl5EytTBYDIneItZmm6ZW-qSlOG3t2M7e3rv8OP_eH-EroHcAzA2SEkKg6IAKAQ_QT1gnCYMsvy020maJZDSz3N0EcKKdJKB6KGvN28qq6N1C_weG_2Npya23uGdjUs81I1rNlbjsnEhemVdfMClcnjkovHbVvlo1wZPlVsYPPOt0yoaHJcGT9q4tsaHx0t0Vqt1MFfH2Ucfz8NZ-ZqMJy-j8mmcaCpITKjK1JzkmQENnHJeVCRXc8GgruvMqFpwXhWi4lRoxVk1ZzxnmoKqmdBUFynto5tD7o9vtq0JUa6a7o_upExZJtIiI5R16u6gtG9C8KaWP95ulP-VQOS-Q7nvUB477PjtgS-tq9TO_q__ADqBcT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548294035</pqid></control><display><type>article</type><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Dai, Zhifeng ; Chang, Xiaoming</creator><contributor>de Oliveira Correia, José António Fonseca ; José António Fonseca de Oliveira Correia</contributor><creatorcontrib>Dai, Zhifeng ; Chang, Xiaoming ; de Oliveira Correia, José António Fonseca ; José António Fonseca de Oliveira Correia</creatorcontrib><description>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9911986</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Constraint modelling ; Economic analysis ; Investments ; Model accuracy ; Outliers (statistics) ; Performance prediction ; Portfolio performance ; Risk aversion ; Variables</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Zhifeng Dai and Xiaoming Chang.</rights><rights>Copyright © 2021 Zhifeng Dai and Xiaoming Chang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</citedby><cites>FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</cites><orcidid>0000-0002-7912-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548294035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548294035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>de Oliveira Correia, José António Fonseca</contributor><contributor>José António Fonseca de Oliveira Correia</contributor><creatorcontrib>Dai, Zhifeng</creatorcontrib><creatorcontrib>Chang, Xiaoming</creatorcontrib><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><title>Mathematical problems in engineering</title><description>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</description><subject>Constraint modelling</subject><subject>Economic analysis</subject><subject>Investments</subject><subject>Model accuracy</subject><subject>Outliers (statistics)</subject><subject>Performance prediction</subject><subject>Portfolio performance</subject><subject>Risk aversion</subject><subject>Variables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Kh1eU2Tpl5EytTBYDIneItZmm6ZW-qSlOG3t2M7e3rv8OP_eH-EroHcAzA2SEkKg6IAKAQ_QT1gnCYMsvy020maJZDSz3N0EcKKdJKB6KGvN28qq6N1C_weG_2Npya23uGdjUs81I1rNlbjsnEhemVdfMClcnjkovHbVvlo1wZPlVsYPPOt0yoaHJcGT9q4tsaHx0t0Vqt1MFfH2Ucfz8NZ-ZqMJy-j8mmcaCpITKjK1JzkmQENnHJeVCRXc8GgruvMqFpwXhWi4lRoxVk1ZzxnmoKqmdBUFynto5tD7o9vtq0JUa6a7o_upExZJtIiI5R16u6gtG9C8KaWP95ulP-VQOS-Q7nvUB477PjtgS-tq9TO_q__ADqBcT8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dai, Zhifeng</creator><creator>Chang, Xiaoming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7912-1280</orcidid></search><sort><creationdate>2021</creationdate><title>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</title><author>Dai, Zhifeng ; Chang, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constraint modelling</topic><topic>Economic analysis</topic><topic>Investments</topic><topic>Model accuracy</topic><topic>Outliers (statistics)</topic><topic>Performance prediction</topic><topic>Portfolio performance</topic><topic>Risk aversion</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhifeng</creatorcontrib><creatorcontrib>Chang, Xiaoming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhifeng</au><au>Chang, Xiaoming</au><au>de Oliveira Correia, José António Fonseca</au><au>José António Fonseca de Oliveira Correia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We find that imposing economic constraint on stock return forecasts based on the Interquartile Range of equity premium can significantly strengthen predictive performance. Specifically, we construct a judgment mechanism that truncates the outliers in forecasts of stock return. We prove that our constraint approach can realize more accurate predictive information relative to the unconstraint approach from the perspective of statistics and economics. In addition, the new constraint approach can effectively defeat CT constraint and CDA strategy. The three mixed models we proposed can further enhance the accuracy of prediction, especially the mixed model combined with our constraint approach. Finally, utilizing our new constraint approach can help investors obtain considerable economic gains. With the application of extension and robustness analysis, our results are robust.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9911986</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7912-1280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2548294035
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Constraint modelling
Economic analysis
Investments
Model accuracy
Outliers (statistics)
Performance prediction
Portfolio performance
Risk aversion
Variables
title Predicting Stock Return with Economic Constraint: Can Interquartile Range Truncate the Outliers?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Stock%20Return%20with%20Economic%20Constraint:%20Can%20Interquartile%20Range%20Truncate%20the%20Outliers?&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Dai,%20Zhifeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9911986&rft_dat=%3Cproquest_cross%3E2548294035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-3a4ab074e1c163669d07ab851fff4eaf866d98d638ca65db5675c31af58c3c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548294035&rft_id=info:pmid/&rfr_iscdi=true