Loading…

Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation

In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and col...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2021-06, Vol.2021 (1)
Main Authors: Wang, Wencheng, Yuan, Xiaohui, Chen, Zhenxue, Wu, XiaoJin, Gao, Zairui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493
cites cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493
container_end_page
container_issue 1
container_start_page
container_title Journal of sensors
container_volume 2021
creator Wang, Wencheng
Yuan, Xiaohui
Chen, Zhenxue
Wu, XiaoJin
Gao, Zairui
description In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.
doi_str_mv 10.1155/2021/5563698
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548295224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548295224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKs7f8CAS42dR2aSLGuptRBxU9FduJlHk9rMxJlU8d-b0uLSzT138XEOfFF0TfA9IZxPKKZkwrlgIs9OohERWRqnVGSnfz9_P48uQthgLFjK2Ciq3jR8xEWzrnu0bGGt0dzWYKVute3Rs-5rp9ADBK2Qs2iqoOubL40KJ2GLFtC2gFYebDDOtwisQjO3dX64badtgL5x9jI6M7AN-uqY4-j1cb6aPcXFy2I5mxaxTHDSxwmwFFSlKVaEUcNxxRPDcprgXFIspaFUGSWIYSnBwhDJQJoMCwEMcJXkbBzdHHo77z53OvTlxu28HSZLypOM5pzSZKDuDpT0LgSvTdn5pgX_UxJc7i2We4vl0eKA3x7wurEKvpv_6V8XA3Dh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548295224</pqid></control><display><type>article</type><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui</creator><contributor>Gao, Bin ; Bin Gao</contributor><creatorcontrib>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui ; Gao, Bin ; Bin Gao</creatorcontrib><description>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2021/5563698</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Color ; Compensation ; Deep learning ; Illumination ; Image contrast ; Image enhancement ; Light ; Methods ; Noise ; Probability distribution ; Vision systems ; Visual effects ; Wavelet transforms</subject><ispartof>Journal of sensors, 2021-06, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Wencheng Wang et al.</rights><rights>Copyright © 2021 Wencheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</citedby><cites>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</cites><orcidid>0000-0002-0888-9225 ; 0000-0001-6897-4563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548295224/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548295224?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Gao, Bin</contributor><contributor>Bin Gao</contributor><creatorcontrib>Wang, Wencheng</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Chen, Zhenxue</creatorcontrib><creatorcontrib>Wu, XiaoJin</creatorcontrib><creatorcontrib>Gao, Zairui</creatorcontrib><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><title>Journal of sensors</title><description>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</description><subject>Algorithms</subject><subject>Color</subject><subject>Compensation</subject><subject>Deep learning</subject><subject>Illumination</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Light</subject><subject>Methods</subject><subject>Noise</subject><subject>Probability distribution</subject><subject>Vision systems</subject><subject>Visual effects</subject><subject>Wavelet transforms</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEtLw0AUhYMoWKs7f8CAS42dR2aSLGuptRBxU9FduJlHk9rMxJlU8d-b0uLSzT138XEOfFF0TfA9IZxPKKZkwrlgIs9OohERWRqnVGSnfz9_P48uQthgLFjK2Ciq3jR8xEWzrnu0bGGt0dzWYKVute3Rs-5rp9ADBK2Qs2iqoOubL40KJ2GLFtC2gFYebDDOtwisQjO3dX64badtgL5x9jI6M7AN-uqY4-j1cb6aPcXFy2I5mxaxTHDSxwmwFFSlKVaEUcNxxRPDcprgXFIspaFUGSWIYSnBwhDJQJoMCwEMcJXkbBzdHHo77z53OvTlxu28HSZLypOM5pzSZKDuDpT0LgSvTdn5pgX_UxJc7i2We4vl0eKA3x7wurEKvpv_6V8XA3Dh</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Wang, Wencheng</creator><creator>Yuan, Xiaohui</creator><creator>Chen, Zhenxue</creator><creator>Wu, XiaoJin</creator><creator>Gao, Zairui</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0888-9225</orcidid><orcidid>https://orcid.org/0000-0001-6897-4563</orcidid></search><sort><creationdate>20210625</creationdate><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><author>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Compensation</topic><topic>Deep learning</topic><topic>Illumination</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Light</topic><topic>Methods</topic><topic>Noise</topic><topic>Probability distribution</topic><topic>Vision systems</topic><topic>Visual effects</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wencheng</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Chen, Zhenxue</creatorcontrib><creatorcontrib>Wu, XiaoJin</creatorcontrib><creatorcontrib>Gao, Zairui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wencheng</au><au>Yuan, Xiaohui</au><au>Chen, Zhenxue</au><au>Wu, XiaoJin</au><au>Gao, Zairui</au><au>Gao, Bin</au><au>Bin Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</atitle><jtitle>Journal of sensors</jtitle><date>2021-06-25</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5563698</doi><orcidid>https://orcid.org/0000-0002-0888-9225</orcidid><orcidid>https://orcid.org/0000-0001-6897-4563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2021-06, Vol.2021 (1)
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2548295224
source Wiley Online Library Open Access; ProQuest - Publicly Available Content Database
subjects Algorithms
Color
Compensation
Deep learning
Illumination
Image contrast
Image enhancement
Light
Methods
Noise
Probability distribution
Vision systems
Visual effects
Wavelet transforms
title Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak-Light%20Image%20Enhancement%20Method%20Based%20on%20Adaptive%20Local%20Gamma%20Transform%20and%20Color%20Compensation&rft.jtitle=Journal%20of%20sensors&rft.au=Wang,%20Wencheng&rft.date=2021-06-25&rft.volume=2021&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2021/5563698&rft_dat=%3Cproquest_cross%3E2548295224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548295224&rft_id=info:pmid/&rfr_iscdi=true