Loading…
Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation
In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and col...
Saved in:
Published in: | Journal of sensors 2021-06, Vol.2021 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of sensors |
container_volume | 2021 |
creator | Wang, Wencheng Yuan, Xiaohui Chen, Zhenxue Wu, XiaoJin Gao, Zairui |
description | In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images. |
doi_str_mv | 10.1155/2021/5563698 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548295224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548295224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKs7f8CAS42dR2aSLGuptRBxU9FduJlHk9rMxJlU8d-b0uLSzT138XEOfFF0TfA9IZxPKKZkwrlgIs9OohERWRqnVGSnfz9_P48uQthgLFjK2Ciq3jR8xEWzrnu0bGGt0dzWYKVute3Rs-5rp9ADBK2Qs2iqoOubL40KJ2GLFtC2gFYebDDOtwisQjO3dX64badtgL5x9jI6M7AN-uqY4-j1cb6aPcXFy2I5mxaxTHDSxwmwFFSlKVaEUcNxxRPDcprgXFIspaFUGSWIYSnBwhDJQJoMCwEMcJXkbBzdHHo77z53OvTlxu28HSZLypOM5pzSZKDuDpT0LgSvTdn5pgX_UxJc7i2We4vl0eKA3x7wurEKvpv_6V8XA3Dh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548295224</pqid></control><display><type>article</type><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui</creator><contributor>Gao, Bin ; Bin Gao</contributor><creatorcontrib>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui ; Gao, Bin ; Bin Gao</creatorcontrib><description>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2021/5563698</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Color ; Compensation ; Deep learning ; Illumination ; Image contrast ; Image enhancement ; Light ; Methods ; Noise ; Probability distribution ; Vision systems ; Visual effects ; Wavelet transforms</subject><ispartof>Journal of sensors, 2021-06, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Wencheng Wang et al.</rights><rights>Copyright © 2021 Wencheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</citedby><cites>FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</cites><orcidid>0000-0002-0888-9225 ; 0000-0001-6897-4563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548295224/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548295224?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Gao, Bin</contributor><contributor>Bin Gao</contributor><creatorcontrib>Wang, Wencheng</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Chen, Zhenxue</creatorcontrib><creatorcontrib>Wu, XiaoJin</creatorcontrib><creatorcontrib>Gao, Zairui</creatorcontrib><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><title>Journal of sensors</title><description>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</description><subject>Algorithms</subject><subject>Color</subject><subject>Compensation</subject><subject>Deep learning</subject><subject>Illumination</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Light</subject><subject>Methods</subject><subject>Noise</subject><subject>Probability distribution</subject><subject>Vision systems</subject><subject>Visual effects</subject><subject>Wavelet transforms</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEtLw0AUhYMoWKs7f8CAS42dR2aSLGuptRBxU9FduJlHk9rMxJlU8d-b0uLSzT138XEOfFF0TfA9IZxPKKZkwrlgIs9OohERWRqnVGSnfz9_P48uQthgLFjK2Ciq3jR8xEWzrnu0bGGt0dzWYKVute3Rs-5rp9ADBK2Qs2iqoOubL40KJ2GLFtC2gFYebDDOtwisQjO3dX64badtgL5x9jI6M7AN-uqY4-j1cb6aPcXFy2I5mxaxTHDSxwmwFFSlKVaEUcNxxRPDcprgXFIspaFUGSWIYSnBwhDJQJoMCwEMcJXkbBzdHHo77z53OvTlxu28HSZLypOM5pzSZKDuDpT0LgSvTdn5pgX_UxJc7i2We4vl0eKA3x7wurEKvpv_6V8XA3Dh</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Wang, Wencheng</creator><creator>Yuan, Xiaohui</creator><creator>Chen, Zhenxue</creator><creator>Wu, XiaoJin</creator><creator>Gao, Zairui</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0888-9225</orcidid><orcidid>https://orcid.org/0000-0001-6897-4563</orcidid></search><sort><creationdate>20210625</creationdate><title>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</title><author>Wang, Wencheng ; Yuan, Xiaohui ; Chen, Zhenxue ; Wu, XiaoJin ; Gao, Zairui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Compensation</topic><topic>Deep learning</topic><topic>Illumination</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Light</topic><topic>Methods</topic><topic>Noise</topic><topic>Probability distribution</topic><topic>Vision systems</topic><topic>Visual effects</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wencheng</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Chen, Zhenxue</creatorcontrib><creatorcontrib>Wu, XiaoJin</creatorcontrib><creatorcontrib>Gao, Zairui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wencheng</au><au>Yuan, Xiaohui</au><au>Chen, Zhenxue</au><au>Wu, XiaoJin</au><au>Gao, Zairui</au><au>Gao, Bin</au><au>Bin Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation</atitle><jtitle>Journal of sensors</jtitle><date>2021-06-25</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the Y component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5563698</doi><orcidid>https://orcid.org/0000-0002-0888-9225</orcidid><orcidid>https://orcid.org/0000-0001-6897-4563</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2021-06, Vol.2021 (1) |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2548295224 |
source | Wiley Online Library Open Access; ProQuest - Publicly Available Content Database |
subjects | Algorithms Color Compensation Deep learning Illumination Image contrast Image enhancement Light Methods Noise Probability distribution Vision systems Visual effects Wavelet transforms |
title | Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak-Light%20Image%20Enhancement%20Method%20Based%20on%20Adaptive%20Local%20Gamma%20Transform%20and%20Color%20Compensation&rft.jtitle=Journal%20of%20sensors&rft.au=Wang,%20Wencheng&rft.date=2021-06-25&rft.volume=2021&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2021/5563698&rft_dat=%3Cproquest_cross%3E2548295224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-4a37adbe20d132f50b54f392409c20ccf22dfd61f37106f1c3acf8066a3a0b493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548295224&rft_id=info:pmid/&rfr_iscdi=true |