Loading…
Induced matchings in strongly biconvex graphs and some algebraic applications
In this paper, motivated by a question posed by H. de Alba and D. T. Hoang, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum...
Saved in:
Published in: | Mathematische Nachrichten 2021-06, Vol.294 (6), p.1160-1174 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13 |
container_end_page | 1174 |
container_issue | 6 |
container_start_page | 1160 |
container_title | Mathematische Nachrichten |
container_volume | 294 |
creator | Saeedi Madani, Sara Kiani, Dariush |
description | In this paper, motivated by a question posed by H. de Alba and D. T. Hoang, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum induced matching. Applying this algorithm, we provide a strongly biconvex graph whose (monomial) edge ideal does not admit a unique extremal Betti number. Using this constructed graph, we provide an infinite family of the so‐called closed graphs (also known as proper interval graphs) whose binomial edge ideals do not have a unique extremal Betti number. This, in particular, answers the aforementioned question. |
doi_str_mv | 10.1002/mana.201900472 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548316717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548316717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13</originalsourceid><addsrcrecordid>eNo9kM1LwzAchoMoOKdXzwHPnUnaJM1Rhh-DiRcFbyH5Je062qQmnbj_3o2Jp_fy8D7wIHRLyYISwu4HE8yCEaoIqSQ7QzPKGSuYoOIczQ4AL3hdfV6iq5y3hBClpJih11VwO_AOD2aCTRfajLuA85RiaPs9th3E8O1_cJvMuMnYBIdzHDw2fettMh1gM459B2bqYsjX6KIxffY3fztHH0-P78uXYv32vFo-rAsoiZwKYBZM3TDCjXUlLUERWQvpgVtpm0ZYClApqkrJHQMrKLiKOWVJRYE5oOUc3Z1-xxS_dj5Peht3KRyUmvGqLqmQVB6oxYmCFHNOvtFj6gaT9poSfUymj8n0f7LyF4ykYFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548316717</pqid></control><display><type>article</type><title>Induced matchings in strongly biconvex graphs and some algebraic applications</title><source>Wiley</source><creator>Saeedi Madani, Sara ; Kiani, Dariush</creator><creatorcontrib>Saeedi Madani, Sara ; Kiani, Dariush</creatorcontrib><description>In this paper, motivated by a question posed by H. de Alba and D. T. Hoang, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum induced matching. Applying this algorithm, we provide a strongly biconvex graph whose (monomial) edge ideal does not admit a unique extremal Betti number. Using this constructed graph, we provide an infinite family of the so‐called closed graphs (also known as proper interval graphs) whose binomial edge ideals do not have a unique extremal Betti number. This, in particular, answers the aforementioned question.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201900472</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Graph matching ; Graphs ; Questions</subject><ispartof>Mathematische Nachrichten, 2021-06, Vol.294 (6), p.1160-1174</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13</citedby><cites>FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saeedi Madani, Sara</creatorcontrib><creatorcontrib>Kiani, Dariush</creatorcontrib><title>Induced matchings in strongly biconvex graphs and some algebraic applications</title><title>Mathematische Nachrichten</title><description>In this paper, motivated by a question posed by H. de Alba and D. T. Hoang, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum induced matching. Applying this algorithm, we provide a strongly biconvex graph whose (monomial) edge ideal does not admit a unique extremal Betti number. Using this constructed graph, we provide an infinite family of the so‐called closed graphs (also known as proper interval graphs) whose binomial edge ideals do not have a unique extremal Betti number. This, in particular, answers the aforementioned question.</description><subject>Algorithms</subject><subject>Graph matching</subject><subject>Graphs</subject><subject>Questions</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAchoMoOKdXzwHPnUnaJM1Rhh-DiRcFbyH5Je062qQmnbj_3o2Jp_fy8D7wIHRLyYISwu4HE8yCEaoIqSQ7QzPKGSuYoOIczQ4AL3hdfV6iq5y3hBClpJih11VwO_AOD2aCTRfajLuA85RiaPs9th3E8O1_cJvMuMnYBIdzHDw2fettMh1gM459B2bqYsjX6KIxffY3fztHH0-P78uXYv32vFo-rAsoiZwKYBZM3TDCjXUlLUERWQvpgVtpm0ZYClApqkrJHQMrKLiKOWVJRYE5oOUc3Z1-xxS_dj5Peht3KRyUmvGqLqmQVB6oxYmCFHNOvtFj6gaT9poSfUymj8n0f7LyF4ykYFo</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Saeedi Madani, Sara</creator><creator>Kiani, Dariush</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202106</creationdate><title>Induced matchings in strongly biconvex graphs and some algebraic applications</title><author>Saeedi Madani, Sara ; Kiani, Dariush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Graph matching</topic><topic>Graphs</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeedi Madani, Sara</creatorcontrib><creatorcontrib>Kiani, Dariush</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeedi Madani, Sara</au><au>Kiani, Dariush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced matchings in strongly biconvex graphs and some algebraic applications</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2021-06</date><risdate>2021</risdate><volume>294</volume><issue>6</issue><spage>1160</spage><epage>1174</epage><pages>1160-1174</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this paper, motivated by a question posed by H. de Alba and D. T. Hoang, we introduce strongly biconvex graphs as a subclass of weakly chordal and bipartite graphs. We give a linear time algorithm to find an induced matching for such graphs and we prove that this algorithm indeed gives a maximum induced matching. Applying this algorithm, we provide a strongly biconvex graph whose (monomial) edge ideal does not admit a unique extremal Betti number. Using this constructed graph, we provide an infinite family of the so‐called closed graphs (also known as proper interval graphs) whose binomial edge ideals do not have a unique extremal Betti number. This, in particular, answers the aforementioned question.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201900472</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2021-06, Vol.294 (6), p.1160-1174 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2548316717 |
source | Wiley |
subjects | Algorithms Graph matching Graphs Questions |
title | Induced matchings in strongly biconvex graphs and some algebraic applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20matchings%20in%20strongly%20biconvex%20graphs%20and%20some%20algebraic%20applications&rft.jtitle=Mathematische%20Nachrichten&rft.au=Saeedi%20Madani,%20Sara&rft.date=2021-06&rft.volume=294&rft.issue=6&rft.spage=1160&rft.epage=1174&rft.pages=1160-1174&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201900472&rft_dat=%3Cproquest_cross%3E2548316717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-c2bca8f205abd313c907867ec5b7bff6b1cc4919375d2cb61cd42d9b041c2dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548316717&rft_id=info:pmid/&rfr_iscdi=true |