Loading…

Modified Ethylsilicates as Efficient Innovative Consolidants for Sedimentary Rock

Although silicon alkoxides (especially ethylsilicates) have long been used as consolidants of weathered stone monuments, their physical properties are not ideal. In this study, an innovative procedure for the consolidation of sedimentary rocks was developed that combines the use of organometallic an...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2019-01, Vol.9 (1), p.6
Main Authors: Remzova, Monika, Carrascosa, Luis, Mosquera, María, Rathousky, Jiri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although silicon alkoxides (especially ethylsilicates) have long been used as consolidants of weathered stone monuments, their physical properties are not ideal. In this study, an innovative procedure for the consolidation of sedimentary rocks was developed that combines the use of organometallic and alkylamine catalysts with the addition of well-defined nanoparticles exhibiting a narrow size distribution centered at ca. 10 nm. As a suitable test material, Pietra di Lecce limestone was selected because of its color and problematic physico-chemical properties, such as rather low hardness. Using the developed procedure, the mechanical and surface properties of the limestone were improved without the unwanted over-consolidation of the surface layers of the stone, and any significant deterioration in the pore size distribution, water vapor permeability, or the stone’s appearance. The developed modified ethylsilicates penetrated deeper into the pore structure of the stone than the unmodified ones and increased the hardness of the treated material. The formed xerogels within the stone pores did not crack. Importantly, they did not significantly alter the natural characteristics of the stone.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings9010006