Loading…

Online Home Appliance Control Using EEG-Based Brain–Computer Interfaces

Brain–computer interfaces (BCIs) allow patients with paralysis to control external devices by mental commands. Recent advances in home automation and the Internet of things may extend the horizon of BCI applications into daily living environments at home. In this study, we developed an online BCI ba...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2019-10, Vol.8 (10), p.1101
Main Authors: Kim, Minju, Kim, Min-Ki, Hwang, Minho, Kim, Hyun-Young, Cho, Jeongho, Kim, Sung-Phil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain–computer interfaces (BCIs) allow patients with paralysis to control external devices by mental commands. Recent advances in home automation and the Internet of things may extend the horizon of BCI applications into daily living environments at home. In this study, we developed an online BCI based on scalp electroencephalography (EEG) to control home appliances. The BCI users controlled TV channels, a digital door-lock system, and an electric light system in an unshielded environment. The BCI was designed to harness P300 and N200 components of event-related potentials (ERPs). On average, the BCI users could control TV channels with an accuracy of 83.0% ± 17.9%, the digital door-lock with 78.7% ± 16.2% accuracy, and the light with 80.0% ± 15.6% accuracy, respectively. Our study demonstrates a feasibility to control multiple home appliances using EEG-based BCIs.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8101101