Loading…

Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application

This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the devi...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-04, Vol.10 (8), p.873
Main Authors: Nasri, Abbas, Estebsari, Motahhareh, Toofan, Siroos, Piacibello, Anna, Pirola, Marco, Camarchia, Vittorio, Ramella, Chiara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163
cites cdi_FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163
container_end_page
container_issue 8
container_start_page 873
container_title Electronics (Basel)
container_volume 10
creator Nasri, Abbas
Estebsari, Motahhareh
Toofan, Siroos
Piacibello, Anna
Pirola, Marco
Camarchia, Vittorio
Ramella, Chiara
description This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the device’s parasitic elements. By properly accounting for this effect, the designed output matching network was able to follow the desired impedance trajectories across the 2.8 GHz to 3.6 GHz range (fractional bandwidth = 25%), with a good trade-off between efficiency and bandwidth. The Doherty power amplifier was designed with two 10 W packaged GaN HEMTs. The measurement results showed that it provided 43 dBm to 44.2 dBm saturated output power and 8 dB to 13.5 dB linear power gain over the entire band. The achieved drain efficiency was between 62% and 76.5% at saturation and between 44% and 56% at 6 dB of output power back-off.
doi_str_mv 10.3390/electronics10080873
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548428838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548428838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163</originalsourceid><addsrcrecordid>eNptUEtLw0AYXETBEvsLvCx4ju4jab49hra2QkEPFY9hs49mS5qNuyml_96UevDgXGYOwwwzCD1S8sy5IC-mNWoIvnMqUkKAQMFv0ISRQqSCCXb7R9-jaYx7MkJQDpxM0HZhott12Fss8ZfTppadxgvfmDCc8Yc_mYDLQ98660Z1ckOD127X4KW1TjnTqTO2PuB8hct-dCk5ON89oDsr22imv5ygz9fldr5ON--rt3m5SRVnbEh1zWaK2MLYTFAJ0igtpBCQgaK2UDkwYnMtCl7ojNY5iHqmAXStLIw76Ywn6Oma2wf_fTRxqPb-GLqxsmJ5BhkDGFcmiF9dKvgYg7FVH9xBhnNFSXV5sPrnQf4DKchmiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548428838</pqid></control><display><type>article</type><title>Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application</title><source>Publicly Available Content Database</source><creator>Nasri, Abbas ; Estebsari, Motahhareh ; Toofan, Siroos ; Piacibello, Anna ; Pirola, Marco ; Camarchia, Vittorio ; Ramella, Chiara</creator><creatorcontrib>Nasri, Abbas ; Estebsari, Motahhareh ; Toofan, Siroos ; Piacibello, Anna ; Pirola, Marco ; Camarchia, Vittorio ; Ramella, Chiara</creatorcontrib><description>This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the device’s parasitic elements. By properly accounting for this effect, the designed output matching network was able to follow the desired impedance trajectories across the 2.8 GHz to 3.6 GHz range (fractional bandwidth = 25%), with a good trade-off between efficiency and bandwidth. The Doherty power amplifier was designed with two 10 W packaged GaN HEMTs. The measurement results showed that it provided 43 dBm to 44.2 dBm saturated output power and 8 dB to 13.5 dB linear power gain over the entire band. The achieved drain efficiency was between 62% and 76.5% at saturation and between 44% and 56% at 6 dB of output power back-off.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10080873</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifier design ; Bandwidths ; Broadband ; Design ; Efficiency ; Impedance ; Matching ; Power amplifiers ; Power gain ; Transistors</subject><ispartof>Electronics (Basel), 2021-04, Vol.10 (8), p.873</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163</citedby><cites>FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163</cites><orcidid>0000-0002-3501-4969 ; 0000-0002-5759-9697 ; 0000-0002-1306-9301 ; 0000-0001-5007-0005 ; 0000-0003-0634-1474 ; 0000-0002-7294-6773 ; 0000-0003-3929-3341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548428838/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548428838?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nasri, Abbas</creatorcontrib><creatorcontrib>Estebsari, Motahhareh</creatorcontrib><creatorcontrib>Toofan, Siroos</creatorcontrib><creatorcontrib>Piacibello, Anna</creatorcontrib><creatorcontrib>Pirola, Marco</creatorcontrib><creatorcontrib>Camarchia, Vittorio</creatorcontrib><creatorcontrib>Ramella, Chiara</creatorcontrib><title>Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application</title><title>Electronics (Basel)</title><description>This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the device’s parasitic elements. By properly accounting for this effect, the designed output matching network was able to follow the desired impedance trajectories across the 2.8 GHz to 3.6 GHz range (fractional bandwidth = 25%), with a good trade-off between efficiency and bandwidth. The Doherty power amplifier was designed with two 10 W packaged GaN HEMTs. The measurement results showed that it provided 43 dBm to 44.2 dBm saturated output power and 8 dB to 13.5 dB linear power gain over the entire band. The achieved drain efficiency was between 62% and 76.5% at saturation and between 44% and 56% at 6 dB of output power back-off.</description><subject>Amplifier design</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Design</subject><subject>Efficiency</subject><subject>Impedance</subject><subject>Matching</subject><subject>Power amplifiers</subject><subject>Power gain</subject><subject>Transistors</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUEtLw0AYXETBEvsLvCx4ju4jab49hra2QkEPFY9hs49mS5qNuyml_96UevDgXGYOwwwzCD1S8sy5IC-mNWoIvnMqUkKAQMFv0ISRQqSCCXb7R9-jaYx7MkJQDpxM0HZhott12Fss8ZfTppadxgvfmDCc8Yc_mYDLQ98660Z1ckOD127X4KW1TjnTqTO2PuB8hct-dCk5ON89oDsr22imv5ygz9fldr5ON--rt3m5SRVnbEh1zWaK2MLYTFAJ0igtpBCQgaK2UDkwYnMtCl7ojNY5iHqmAXStLIw76Ywn6Oma2wf_fTRxqPb-GLqxsmJ5BhkDGFcmiF9dKvgYg7FVH9xBhnNFSXV5sPrnQf4DKchmiA</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Nasri, Abbas</creator><creator>Estebsari, Motahhareh</creator><creator>Toofan, Siroos</creator><creator>Piacibello, Anna</creator><creator>Pirola, Marco</creator><creator>Camarchia, Vittorio</creator><creator>Ramella, Chiara</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3501-4969</orcidid><orcidid>https://orcid.org/0000-0002-5759-9697</orcidid><orcidid>https://orcid.org/0000-0002-1306-9301</orcidid><orcidid>https://orcid.org/0000-0001-5007-0005</orcidid><orcidid>https://orcid.org/0000-0003-0634-1474</orcidid><orcidid>https://orcid.org/0000-0002-7294-6773</orcidid><orcidid>https://orcid.org/0000-0003-3929-3341</orcidid></search><sort><creationdate>20210407</creationdate><title>Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application</title><author>Nasri, Abbas ; Estebsari, Motahhareh ; Toofan, Siroos ; Piacibello, Anna ; Pirola, Marco ; Camarchia, Vittorio ; Ramella, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplifier design</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Design</topic><topic>Efficiency</topic><topic>Impedance</topic><topic>Matching</topic><topic>Power amplifiers</topic><topic>Power gain</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasri, Abbas</creatorcontrib><creatorcontrib>Estebsari, Motahhareh</creatorcontrib><creatorcontrib>Toofan, Siroos</creatorcontrib><creatorcontrib>Piacibello, Anna</creatorcontrib><creatorcontrib>Pirola, Marco</creatorcontrib><creatorcontrib>Camarchia, Vittorio</creatorcontrib><creatorcontrib>Ramella, Chiara</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasri, Abbas</au><au>Estebsari, Motahhareh</au><au>Toofan, Siroos</au><au>Piacibello, Anna</au><au>Pirola, Marco</au><au>Camarchia, Vittorio</au><au>Ramella, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-04-07</date><risdate>2021</risdate><volume>10</volume><issue>8</issue><spage>873</spage><pages>873-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the device’s parasitic elements. By properly accounting for this effect, the designed output matching network was able to follow the desired impedance trajectories across the 2.8 GHz to 3.6 GHz range (fractional bandwidth = 25%), with a good trade-off between efficiency and bandwidth. The Doherty power amplifier was designed with two 10 W packaged GaN HEMTs. The measurement results showed that it provided 43 dBm to 44.2 dBm saturated output power and 8 dB to 13.5 dB linear power gain over the entire band. The achieved drain efficiency was between 62% and 76.5% at saturation and between 44% and 56% at 6 dB of output power back-off.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10080873</doi><orcidid>https://orcid.org/0000-0002-3501-4969</orcidid><orcidid>https://orcid.org/0000-0002-5759-9697</orcidid><orcidid>https://orcid.org/0000-0002-1306-9301</orcidid><orcidid>https://orcid.org/0000-0001-5007-0005</orcidid><orcidid>https://orcid.org/0000-0003-0634-1474</orcidid><orcidid>https://orcid.org/0000-0002-7294-6773</orcidid><orcidid>https://orcid.org/0000-0003-3929-3341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-04, Vol.10 (8), p.873
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2548428838
source Publicly Available Content Database
subjects Amplifier design
Bandwidths
Broadband
Design
Efficiency
Impedance
Matching
Power amplifiers
Power gain
Transistors
title Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Wideband%20Doherty%20Power%20Amplifier%20with%20High%20Efficiency%20for%205G%20Application&rft.jtitle=Electronics%20(Basel)&rft.au=Nasri,%20Abbas&rft.date=2021-04-07&rft.volume=10&rft.issue=8&rft.spage=873&rft.pages=873-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10080873&rft_dat=%3Cproquest_cross%3E2548428838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-db26c0f7ef491a8aecd9a99848c1f7c5820f5d9737d41b589b6d88dbcf8008163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548428838&rft_id=info:pmid/&rfr_iscdi=true