Loading…
Growth responses of light demanding and shade tolerant peat swamp forest saplings to elevated CO2
Aim: To determine the growth responses of two peat swamp forest species, Shorea platycarpa, a shade-tolerant slow-growing species and Macaranga pruinosa, a light-demanding fast-growing species under elevated atmospheric CO2 concentration. Methodology: The saplings of both species were grown in a sha...
Saved in:
Published in: | Journal of environmental biology 2021-05, Vol.42, p.735-743 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aim: To determine the growth responses of two peat swamp forest species, Shorea platycarpa, a shade-tolerant slow-growing species and Macaranga pruinosa, a light-demanding fast-growing species under elevated atmospheric CO2 concentration. Methodology: The saplings of both species were grown in a shade house at ambient (400±50 pimol mol'1) and in an open roof ventilation greenhouse at elevated atmospheric CO2 concentration 800±50 pmol mol-1 for seven months. The temperature in both environments ranged between 25-33°C with 55-60% sunlight transmittance and the saplings were thoroughly watered twice a day. Plants growth measurements were estimated at frequent intervals. Saplings biomass characteristics were examined using destructive methods after seven months of treatment and non-destructive method was used for determination of leaf area. Results: Elevated CO2 enhanced all the growth characteristics in M. pruinosa with a significant increase was observed particularly on both height and diameter relative growth rate and biomass characteristics. The height relative growth rate and leaf area were significantly reduced under elevated CO2 in S. platycarpa but did not affect the shoot or root diameter and biomass significantly. A positive correlation (r =0.77, p>0.05) between stem biomass and basal diameter for plants under elevated CO2 was recorded for M. pruinosa, but not in S. platycarpa. Both species showed negative correlation (S. platycarpa; r = -0.53, M. pruinosa; r = -0.46, p>0.05) between stem growth and stem biomass at elevated CO2. Interpretation: These results unveiled profound effects of elevated CO2 on the growth of light-demanding species M. pruinosa, while shade-tolerant species S. platycarpa was not relatively affected by elevated CO2. This underscored the necessity to analyse different species performance to elevated CO2, thereby improving the ability to predict tropical swamp forest ecosystem responses to rising CO2. |
---|---|
ISSN: | 0254-8704 2394-0379 |
DOI: | 10.22438/jeb42/3(SI)/JEB-01 |