Loading…
Numerical and experimental study of an Archimedean Screw Generator
Finding new, safe and renewable energy is becoming more and more of a priority with global warming. One solution that is gaining popularity is the Archimedean Screw Generator (ASG). This kind of hydroelectric plant allows transforming potential energy of a fluid into mechanical energy and is conveni...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2016-11, Vol.49 (10), p.102002 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finding new, safe and renewable energy is becoming more and more of a priority with global warming. One solution that is gaining popularity is the Archimedean Screw Generator (ASG). This kind of hydroelectric plant allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology, there are few references dealing with their design and performance optimization. The present contribution proposes to investigate experimentally and numerically the ASG performances. The experimental study is performed for various flow conditions and a laboratory scale screw device installed at the fluid mechanics laboratory of the INSA of Strasbourg. The first results show that the screw efficiencies are higher than 80% for various hydraulic conditions. In order to study the structure of 3D turbulent flows and energy losses in a screw, the 3D Navier Stokes equations are solved with the k-w SST turbulence model. The exact geometry of the laboratory-scale screw was used in these simulations. Interestingly, the modeled values of efficiency are in fairly good agreement with experimental results while any friction coefficient is involved. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/49/10/102002 |