Loading…

Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results

A method to obtain flow stress in the plastic deformation state is investigated in this study. The flow stress prior to necking is calculated based on Hollomon’s constitutive equation using the strain rate and stress obtained from a tensile test, whereas the strain hardening coefficient after neckin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2021-08, Vol.22 (8), p.1337-1344
Main Authors: Lee, Hyoung-Woo, Yoo, Jae-Hong, Kwon, Yong-Chul, Kang, Jong-Hun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483
cites cdi_FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483
container_end_page 1344
container_issue 8
container_start_page 1337
container_title International journal of precision engineering and manufacturing
container_volume 22
creator Lee, Hyoung-Woo
Yoo, Jae-Hong
Kwon, Yong-Chul
Kang, Jong-Hun
description A method to obtain flow stress in the plastic deformation state is investigated in this study. The flow stress prior to necking is calculated based on Hollomon’s constitutive equation using the strain rate and stress obtained from a tensile test, whereas the strain hardening coefficient after necking is obtained using the stress and strain rate obtained from a compression test; subsequently, the two flow stresses are combined. Two-dimensional rigid plastic finite element analysis considering ductile fracture in the stress test is conducted by inputting the proposed flow stress. It is confirmed that the shape and dimensions of the necking part on the load–displacement curve from the finite element analysis are similar to those obtained experimentally, thereby confirming the validity of the proposed flow stress calculation.
doi_str_mv 10.1007/s12541-021-00538-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548644632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548644632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4soOHRfwFPAczXJS9L0OItTYSLoPIe0SbSSNTNpEb-92SZ48xDeI_n93wu_orgg-IpgXF0nQjkjJab5YA6yFEfFjOa2ZALT49xTYGXFazgt5in1LQZCBXApZoVptO8mr8c-DOjRju_BIBciaoI3aOnDF3oZo00JBYcWXmBJ0Y1O1qCMr-2Qem9zTSPSg8mhzXYH9_vHfPls0-THdF6cOO2Tnf_Ws-J1ebtu7svV091Ds1iVHXAYS7BgBKW17YDSThJmjKtBspYAFtwBr0hdOy2AYS5bXhmDXWs60EJ2gjIJZ8XlYe42hs8pf0B9hCkOeaXKhqRgTADNFD1QXQwpRevUNvYbHb8VwWonVB2EqixU7YUqkUNwCKUMD282_o3-J_UDY_B2oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548644632</pqid></control><display><type>article</type><title>Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results</title><source>Springer Link</source><creator>Lee, Hyoung-Woo ; Yoo, Jae-Hong ; Kwon, Yong-Chul ; Kang, Jong-Hun</creator><creatorcontrib>Lee, Hyoung-Woo ; Yoo, Jae-Hong ; Kwon, Yong-Chul ; Kang, Jong-Hun</creatorcontrib><description>A method to obtain flow stress in the plastic deformation state is investigated in this study. The flow stress prior to necking is calculated based on Hollomon’s constitutive equation using the strain rate and stress obtained from a tensile test, whereas the strain hardening coefficient after necking is obtained using the stress and strain rate obtained from a compression test; subsequently, the two flow stresses are combined. Two-dimensional rigid plastic finite element analysis considering ductile fracture in the stress test is conducted by inputting the proposed flow stress. It is confirmed that the shape and dimensions of the necking part on the load–displacement curve from the finite element analysis are similar to those obtained experimentally, thereby confirming the validity of the proposed flow stress calculation.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-021-00538-6</identifier><language>eng</language><publisher>Seoul: Korean Society for Precision Engineering</publisher><subject>Cold flow ; Compression tests ; Constitutive equations ; Constitutive relationships ; Ductile fracture ; Engineering ; Finite element analysis ; Finite element method ; Heat treating ; Industrial and Production Engineering ; Materials Science ; Mathematical analysis ; Necking ; Plastic deformation ; Regular Paper ; Strain hardening ; Strain rate ; Tensile tests ; Two dimensional analysis ; Two dimensional flow ; Yield strength</subject><ispartof>International journal of precision engineering and manufacturing, 2021-08, Vol.22 (8), p.1337-1344</ispartof><rights>Korean Society for Precision Engineering 2021</rights><rights>Korean Society for Precision Engineering 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483</citedby><cites>FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483</cites><orcidid>0000-0002-9821-7149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Hyoung-Woo</creatorcontrib><creatorcontrib>Yoo, Jae-Hong</creatorcontrib><creatorcontrib>Kwon, Yong-Chul</creatorcontrib><creatorcontrib>Kang, Jong-Hun</creatorcontrib><title>Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>A method to obtain flow stress in the plastic deformation state is investigated in this study. The flow stress prior to necking is calculated based on Hollomon’s constitutive equation using the strain rate and stress obtained from a tensile test, whereas the strain hardening coefficient after necking is obtained using the stress and strain rate obtained from a compression test; subsequently, the two flow stresses are combined. Two-dimensional rigid plastic finite element analysis considering ductile fracture in the stress test is conducted by inputting the proposed flow stress. It is confirmed that the shape and dimensions of the necking part on the load–displacement curve from the finite element analysis are similar to those obtained experimentally, thereby confirming the validity of the proposed flow stress calculation.</description><subject>Cold flow</subject><subject>Compression tests</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Ductile fracture</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Heat treating</subject><subject>Industrial and Production Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Necking</subject><subject>Plastic deformation</subject><subject>Regular Paper</subject><subject>Strain hardening</subject><subject>Strain rate</subject><subject>Tensile tests</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Yield strength</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4soOHRfwFPAczXJS9L0OItTYSLoPIe0SbSSNTNpEb-92SZ48xDeI_n93wu_orgg-IpgXF0nQjkjJab5YA6yFEfFjOa2ZALT49xTYGXFazgt5in1LQZCBXApZoVptO8mr8c-DOjRju_BIBciaoI3aOnDF3oZo00JBYcWXmBJ0Y1O1qCMr-2Qem9zTSPSg8mhzXYH9_vHfPls0-THdF6cOO2Tnf_Ws-J1ebtu7svV091Ds1iVHXAYS7BgBKW17YDSThJmjKtBspYAFtwBr0hdOy2AYS5bXhmDXWs60EJ2gjIJZ8XlYe42hs8pf0B9hCkOeaXKhqRgTADNFD1QXQwpRevUNvYbHb8VwWonVB2EqixU7YUqkUNwCKUMD282_o3-J_UDY_B2oA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lee, Hyoung-Woo</creator><creator>Yoo, Jae-Hong</creator><creator>Kwon, Yong-Chul</creator><creator>Kang, Jong-Hun</creator><general>Korean Society for Precision Engineering</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9821-7149</orcidid></search><sort><creationdate>20210801</creationdate><title>Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results</title><author>Lee, Hyoung-Woo ; Yoo, Jae-Hong ; Kwon, Yong-Chul ; Kang, Jong-Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cold flow</topic><topic>Compression tests</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Ductile fracture</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Heat treating</topic><topic>Industrial and Production Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Necking</topic><topic>Plastic deformation</topic><topic>Regular Paper</topic><topic>Strain hardening</topic><topic>Strain rate</topic><topic>Tensile tests</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyoung-Woo</creatorcontrib><creatorcontrib>Yoo, Jae-Hong</creatorcontrib><creatorcontrib>Kwon, Yong-Chul</creatorcontrib><creatorcontrib>Kang, Jong-Hun</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyoung-Woo</au><au>Yoo, Jae-Hong</au><au>Kwon, Yong-Chul</au><au>Kang, Jong-Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>1337</spage><epage>1344</epage><pages>1337-1344</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>A method to obtain flow stress in the plastic deformation state is investigated in this study. The flow stress prior to necking is calculated based on Hollomon’s constitutive equation using the strain rate and stress obtained from a tensile test, whereas the strain hardening coefficient after necking is obtained using the stress and strain rate obtained from a compression test; subsequently, the two flow stresses are combined. Two-dimensional rigid plastic finite element analysis considering ductile fracture in the stress test is conducted by inputting the proposed flow stress. It is confirmed that the shape and dimensions of the necking part on the load–displacement curve from the finite element analysis are similar to those obtained experimentally, thereby confirming the validity of the proposed flow stress calculation.</abstract><cop>Seoul</cop><pub>Korean Society for Precision Engineering</pub><doi>10.1007/s12541-021-00538-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9821-7149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2234-7593
ispartof International journal of precision engineering and manufacturing, 2021-08, Vol.22 (8), p.1337-1344
issn 2234-7593
2005-4602
language eng
recordid cdi_proquest_journals_2548644632
source Springer Link
subjects Cold flow
Compression tests
Constitutive equations
Constitutive relationships
Ductile fracture
Engineering
Finite element analysis
Finite element method
Heat treating
Industrial and Production Engineering
Materials Science
Mathematical analysis
Necking
Plastic deformation
Regular Paper
Strain hardening
Strain rate
Tensile tests
Two dimensional analysis
Two dimensional flow
Yield strength
title Calculation Method for Cold Flow Stress of Al6082 Based on Tensile Test and Compression Test Results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20Method%20for%20Cold%20Flow%20Stress%20of%20Al6082%20Based%20on%20Tensile%20Test%20and%20Compression%20Test%20Results&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Lee,%20Hyoung-Woo&rft.date=2021-08-01&rft.volume=22&rft.issue=8&rft.spage=1337&rft.epage=1344&rft.pages=1337-1344&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-021-00538-6&rft_dat=%3Cproquest_cross%3E2548644632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-3e3d6229ec322c814ddf9384b13065f357199fa634058b57dd0fbdc3a68c62483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548644632&rft_id=info:pmid/&rfr_iscdi=true