Loading…

On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions

We study the following double-phase problem where and 1

Saved in:
Bibliographic Details
Published in:Applicable analysis 2021-07, Vol.100 (10), p.2147-2162
Main Authors: Ge, Bin, Wang, Li-Yan, Lu, Jian-Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3
cites cdi_FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3
container_end_page 2162
container_issue 10
container_start_page 2147
container_title Applicable analysis
container_volume 100
creator Ge, Bin
Wang, Li-Yan
Lu, Jian-Fang
description We study the following double-phase problem where and 1
doi_str_mv 10.1080/00036811.2019.1679785
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2548739507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548739507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQQj4nJk0TZq-OYb_YDARBd9CmiYso21qkjLmp7dl89Wny-Gec-_hB8AtwQuCBb7HGFMuCFlkmJQLwouyEOwMzAjjFDGcf52D2eRBk-kSXMW4w5hkgvEZeNt0UEHdqBiht7D2Q9UY1G9VNLAPfhQt3Lu09UOCy7YKPpqUHHpXlev8uPhB6dAbqH1Xu-R8F6_BhVVNNDenOQefT48fqxe03jy_rpZrpDMuErKs0BUnnApOCiu41sbkOre0UDUrhS5xSctc65oTQ6zIKNeckbwYBattqegc3B3vji2_BxOT3PkhdONLmbFcFLRkuBhd7OjSY_MYjJV9cK0KB0mwnODJP3hygidP8MbcwzHnOutDq_Y-NLVM6tD4YIPqtIuS_n_iF49-doI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548739507</pqid></control><display><type>article</type><title>On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ge, Bin ; Wang, Li-Yan ; Lu, Jian-Fang</creator><creatorcontrib>Ge, Bin ; Wang, Li-Yan ; Lu, Jian-Fang</creatorcontrib><description>We study the following double-phase problem where and 1&lt;p&lt;q&lt;N. The aim is to determine the precise positive interval of λ for which the problem admits at least two nontrivial solutions via variational methods for the above equation. The primitive of the nonlinearity f is of super-q growth near infinity in u and allowed to be sign-changing. Furthermore, our assumptions are suitable and different from those studied previously.</description><identifier>ISSN: 0003-6811</identifier><identifier>EISSN: 1563-504X</identifier><identifier>DOI: 10.1080/00036811.2019.1679785</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Double-phase problem ; multiple solutions ; sign-changing potential ; variational method ; Variational methods</subject><ispartof>Applicable analysis, 2021-07, Vol.100 (10), p.2147-2162</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3</citedby><cites>FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Bin</creatorcontrib><creatorcontrib>Wang, Li-Yan</creatorcontrib><creatorcontrib>Lu, Jian-Fang</creatorcontrib><title>On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions</title><title>Applicable analysis</title><description>We study the following double-phase problem where and 1&lt;p&lt;q&lt;N. The aim is to determine the precise positive interval of λ for which the problem admits at least two nontrivial solutions via variational methods for the above equation. The primitive of the nonlinearity f is of super-q growth near infinity in u and allowed to be sign-changing. Furthermore, our assumptions are suitable and different from those studied previously.</description><subject>Double-phase problem</subject><subject>multiple solutions</subject><subject>sign-changing potential</subject><subject>variational method</subject><subject>Variational methods</subject><issn>0003-6811</issn><issn>1563-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfQQj4nJk0TZq-OYb_YDARBd9CmiYso21qkjLmp7dl89Wny-Gec-_hB8AtwQuCBb7HGFMuCFlkmJQLwouyEOwMzAjjFDGcf52D2eRBk-kSXMW4w5hkgvEZeNt0UEHdqBiht7D2Q9UY1G9VNLAPfhQt3Lu09UOCy7YKPpqUHHpXlev8uPhB6dAbqH1Xu-R8F6_BhVVNNDenOQefT48fqxe03jy_rpZrpDMuErKs0BUnnApOCiu41sbkOre0UDUrhS5xSctc65oTQ6zIKNeckbwYBattqegc3B3vji2_BxOT3PkhdONLmbFcFLRkuBhd7OjSY_MYjJV9cK0KB0mwnODJP3hygidP8MbcwzHnOutDq_Y-NLVM6tD4YIPqtIuS_n_iF49-doI</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>Ge, Bin</creator><creator>Wang, Li-Yan</creator><creator>Lu, Jian-Fang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20210727</creationdate><title>On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions</title><author>Ge, Bin ; Wang, Li-Yan ; Lu, Jian-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Double-phase problem</topic><topic>multiple solutions</topic><topic>sign-changing potential</topic><topic>variational method</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Bin</creatorcontrib><creatorcontrib>Wang, Li-Yan</creatorcontrib><creatorcontrib>Lu, Jian-Fang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applicable analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Bin</au><au>Wang, Li-Yan</au><au>Lu, Jian-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions</atitle><jtitle>Applicable analysis</jtitle><date>2021-07-27</date><risdate>2021</risdate><volume>100</volume><issue>10</issue><spage>2147</spage><epage>2162</epage><pages>2147-2162</pages><issn>0003-6811</issn><eissn>1563-504X</eissn><abstract>We study the following double-phase problem where and 1&lt;p&lt;q&lt;N. The aim is to determine the precise positive interval of λ for which the problem admits at least two nontrivial solutions via variational methods for the above equation. The primitive of the nonlinearity f is of super-q growth near infinity in u and allowed to be sign-changing. Furthermore, our assumptions are suitable and different from those studied previously.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00036811.2019.1679785</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6811
ispartof Applicable analysis, 2021-07, Vol.100 (10), p.2147-2162
issn 0003-6811
1563-504X
language eng
recordid cdi_proquest_journals_2548739507
source Taylor and Francis Science and Technology Collection
subjects Double-phase problem
multiple solutions
sign-changing potential
variational method
Variational methods
title On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20double-phase%20problem%20without%20Ambrosetti-Rabinowitz-type%20conditions&rft.jtitle=Applicable%20analysis&rft.au=Ge,%20Bin&rft.date=2021-07-27&rft.volume=100&rft.issue=10&rft.spage=2147&rft.epage=2162&rft.pages=2147-2162&rft.issn=0003-6811&rft.eissn=1563-504X&rft_id=info:doi/10.1080/00036811.2019.1679785&rft_dat=%3Cproquest_infor%3E2548739507%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-f57cb61638617f86ccee4c4f37ad598c909394ccd61e1f8236c65147e1f5df9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548739507&rft_id=info:pmid/&rfr_iscdi=true