Loading…

Physical properties of the Hall current

We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall-bar. We follow the approach developed in a previous work (Creff et al. J. Appl. Phys 2020) in which the stationary state of a ideal Hall bar is defined by the minimum power dissipation p...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Faisant, F, Creff, M, J -E Wegrowe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Faisant, F
Creff, M
J -E Wegrowe
description We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall-bar. We follow the approach developed in a previous work (Creff et al. J. Appl. Phys 2020) in which the stationary state of a ideal Hall bar is defined by the minimum power dissipation principle. The presence of both the lateral circuit and the magnetic field induces the injection of a current: the so-called Hall current. Analytical expressions for the longitudinal and the transverse currents are derived. It is shown that the efficiency of the power injection into the lateral circuit is quadratic in the Hall angle and obeys to the maximum transfer theorem. For usual values of the Hall angle, the main contribution of this power injection provides from the longitudinal current flowing along the edges, instead of the transverse current crossing the Hall bar.
doi_str_mv 10.48550/arxiv.2107.01608
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2548740226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548740226</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-6b08365cfff351104ace106f1790b3c6b8477c8c04131cf0db86d5c3f8270ce83</originalsourceid><addsrcrecordid>eNotjk1Lw0AQQBdBsNT-AG8BD54SZ2a_xqMUtYWCHnovm-kuTQlN3U1E_70FPb3be0-pO4TGsLXwGPJ399UQgm8AHfCVmpHWWLMhulGLUo4AQM6TtXqmHj4OP6WT0FfnPJxjHrtYqiFV4yFWq9D3lUw5x9N4q65T6Etc_HOutq8v2-Wq3ry_rZfPmzpYcrVrgbWzklLSFhFMkIjgEvonaLW4lo33wgIGNUqCfctub0UnJg8SWc_V_Z_2cvM5xTLujsOUT5fijqxhb4DI6V8ZK0EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548740226</pqid></control><display><type>article</type><title>Physical properties of the Hall current</title><source>Publicly Available Content Database</source><creator>Faisant, F ; Creff, M ; J -E Wegrowe</creator><creatorcontrib>Faisant, F ; Creff, M ; J -E Wegrowe</creatorcontrib><description>We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall-bar. We follow the approach developed in a previous work (Creff et al. J. Appl. Phys 2020) in which the stationary state of a ideal Hall bar is defined by the minimum power dissipation principle. The presence of both the lateral circuit and the magnetic field induces the injection of a current: the so-called Hall current. Analytical expressions for the longitudinal and the transverse currents are derived. It is shown that the efficiency of the power injection into the lateral circuit is quadratic in the Hall angle and obeys to the maximum transfer theorem. For usual values of the Hall angle, the main contribution of this power injection provides from the longitudinal current flowing along the edges, instead of the transverse current crossing the Hall bar.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2107.01608</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Circuits ; Mathematical analysis ; Physical properties</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2548740226?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Faisant, F</creatorcontrib><creatorcontrib>Creff, M</creatorcontrib><creatorcontrib>J -E Wegrowe</creatorcontrib><title>Physical properties of the Hall current</title><title>arXiv.org</title><description>We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall-bar. We follow the approach developed in a previous work (Creff et al. J. Appl. Phys 2020) in which the stationary state of a ideal Hall bar is defined by the minimum power dissipation principle. The presence of both the lateral circuit and the magnetic field induces the injection of a current: the so-called Hall current. Analytical expressions for the longitudinal and the transverse currents are derived. It is shown that the efficiency of the power injection into the lateral circuit is quadratic in the Hall angle and obeys to the maximum transfer theorem. For usual values of the Hall angle, the main contribution of this power injection provides from the longitudinal current flowing along the edges, instead of the transverse current crossing the Hall bar.</description><subject>Circuits</subject><subject>Mathematical analysis</subject><subject>Physical properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1Lw0AQQBdBsNT-AG8BD54SZ2a_xqMUtYWCHnovm-kuTQlN3U1E_70FPb3be0-pO4TGsLXwGPJ399UQgm8AHfCVmpHWWLMhulGLUo4AQM6TtXqmHj4OP6WT0FfnPJxjHrtYqiFV4yFWq9D3lUw5x9N4q65T6Etc_HOutq8v2-Wq3ry_rZfPmzpYcrVrgbWzklLSFhFMkIjgEvonaLW4lo33wgIGNUqCfctub0UnJg8SWc_V_Z_2cvM5xTLujsOUT5fijqxhb4DI6V8ZK0EF</recordid><startdate>20210704</startdate><enddate>20210704</enddate><creator>Faisant, F</creator><creator>Creff, M</creator><creator>J -E Wegrowe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210704</creationdate><title>Physical properties of the Hall current</title><author>Faisant, F ; Creff, M ; J -E Wegrowe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-6b08365cfff351104ace106f1790b3c6b8477c8c04131cf0db86d5c3f8270ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Mathematical analysis</topic><topic>Physical properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Faisant, F</creatorcontrib><creatorcontrib>Creff, M</creatorcontrib><creatorcontrib>J -E Wegrowe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faisant, F</au><au>Creff, M</au><au>J -E Wegrowe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical properties of the Hall current</atitle><jtitle>arXiv.org</jtitle><date>2021-07-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall-bar. We follow the approach developed in a previous work (Creff et al. J. Appl. Phys 2020) in which the stationary state of a ideal Hall bar is defined by the minimum power dissipation principle. The presence of both the lateral circuit and the magnetic field induces the injection of a current: the so-called Hall current. Analytical expressions for the longitudinal and the transverse currents are derived. It is shown that the efficiency of the power injection into the lateral circuit is quadratic in the Hall angle and obeys to the maximum transfer theorem. For usual values of the Hall angle, the main contribution of this power injection provides from the longitudinal current flowing along the edges, instead of the transverse current crossing the Hall bar.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2107.01608</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2548740226
source Publicly Available Content Database
subjects Circuits
Mathematical analysis
Physical properties
title Physical properties of the Hall current
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20properties%20of%20the%20Hall%20current&rft.jtitle=arXiv.org&rft.au=Faisant,%20F&rft.date=2021-07-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2107.01608&rft_dat=%3Cproquest%3E2548740226%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-6b08365cfff351104ace106f1790b3c6b8477c8c04131cf0db86d5c3f8270ce83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548740226&rft_id=info:pmid/&rfr_iscdi=true