Loading…
Correcting photodetector nonlinearity in dual-comb interferometry
Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizing out-of-band spectral artifacts based on nonline...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizing out-of-band spectral artifacts based on nonlinearity correction methods used in classical Fourier-transform spectrometers is presented. The exactitude of the nonlinearity correction is validated using a low power linear measurement. Spectroscopic lines of H\(^{12}\)CN are provided and the error caused by the saturation of the detector is corrected yielding residuals limited by the measurement noise. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2107.02138 |