Loading…
Investigating the Impact of Energy Source Level on the Self-Guided Vehicle System Performances, in the Industry 4.0 Context
Automated industrial vehicles are taking an imposing place by transforming the industrial operations, and contributing to an efficient in-house transportation of goods. They are expected to bring a variety of benefits towards the Industry 4.0 transition. However, Self-Guided Vehicles (SGVs) are batt...
Saved in:
Published in: | Sustainability 2020-10, Vol.12 (20), p.8541 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Automated industrial vehicles are taking an imposing place by transforming the industrial operations, and contributing to an efficient in-house transportation of goods. They are expected to bring a variety of benefits towards the Industry 4.0 transition. However, Self-Guided Vehicles (SGVs) are battery-powered, unmanned autonomous vehicles. While the operating durability depends on self-path design, planning energy-efficient paths become crucial. Thus, this paper has no concrete contribution but highlights the lack of energy consideration of SGV-system design in literature by presenting a review of energy-constrained global path planning. Then, an experimental investigation explores the long-term effect of battery level on navigation performance of a single vehicle. This experiment was conducted for several hours, a deviation between the global trajectory and the ground-true path executed by the SGV was observed as the battery depleted. The results show that the mean square error (MSE) increases significantly as the battery’s state-of-charge decreases below a certain value. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12208541 |