Loading…

Muller Boundary Integral Equations in the Microring Lasers Theory

The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2021-06, Vol.42 (6), p.1402-1412
Main Authors: Repina, A. I., Oktyabrskaya, A. O., Karchevskii, E. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903
cites cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903
container_end_page 1412
container_issue 6
container_start_page 1402
container_title Lobachevskii journal of mathematics
container_volume 42
creator Repina, A. I.
Oktyabrskaya, A. O.
Karchevskii, E. M.
description The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.
doi_str_mv 10.1134/S199508022106024X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548930830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548930830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHDg7iXMeS1VKpVQMFIktcmKnTRWS1E6G_nscBYkBMd1J7-PuPULuGTwyFkZP70zKGBA4ZyCAR58XZMaQYSCl4Jd-93Aw4tfkxrkjeKIQYkYW26GujaXP7dBoZc900_Rmb1VNV6dB9VXbOFo1tD8Yuq0K29qq2dNUOWMd3R1Ma8-35KpUtTN3P3NOPl5Wu-VrkL6tN8tFGhQ8En3AitBoSBSoJDGIkhdaqwINU5qD4hAmAqM4R8yTgpW5lgqFTkosOQetJYRz8jD5drY9Dcb12bEdbONPZjyOUIaA4chiE8v_6pw1ZdbZ6ssHyxhkY1PZn6a8hk8a143xjP11_l_0DXwZalA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548930830</pqid></control><display><type>article</type><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><source>Springer Nature</source><creator>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</creator><creatorcontrib>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</creatorcontrib><description>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S199508022106024X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Boundary integral method ; Eigenvalues ; Geometry ; Integral equations ; Lasers ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-06, Vol.42 (6), p.1402-1412</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</citedby><cites>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Repina, A. I.</creatorcontrib><creatorcontrib>Oktyabrskaya, A. O.</creatorcontrib><creatorcontrib>Karchevskii, E. M.</creatorcontrib><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Boundary integral method</subject><subject>Eigenvalues</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHDg7iXMeS1VKpVQMFIktcmKnTRWS1E6G_nscBYkBMd1J7-PuPULuGTwyFkZP70zKGBA4ZyCAR58XZMaQYSCl4Jd-93Aw4tfkxrkjeKIQYkYW26GujaXP7dBoZc900_Rmb1VNV6dB9VXbOFo1tD8Yuq0K29qq2dNUOWMd3R1Ma8-35KpUtTN3P3NOPl5Wu-VrkL6tN8tFGhQ8En3AitBoSBSoJDGIkhdaqwINU5qD4hAmAqM4R8yTgpW5lgqFTkosOQetJYRz8jD5drY9Dcb12bEdbONPZjyOUIaA4chiE8v_6pw1ZdbZ6ssHyxhkY1PZn6a8hk8a143xjP11_l_0DXwZalA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Repina, A. I.</creator><creator>Oktyabrskaya, A. O.</creator><creator>Karchevskii, E. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><author>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Boundary integral method</topic><topic>Eigenvalues</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Repina, A. I.</creatorcontrib><creatorcontrib>Oktyabrskaya, A. O.</creatorcontrib><creatorcontrib>Karchevskii, E. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Repina, A. I.</au><au>Oktyabrskaya, A. O.</au><au>Karchevskii, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muller Boundary Integral Equations in the Microring Lasers Theory</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1402</spage><epage>1412</epage><pages>1402-1412</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199508022106024X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-06, Vol.42 (6), p.1402-1412
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2548930830
source Springer Nature
subjects Algebra
Analysis
Boundary integral method
Eigenvalues
Geometry
Integral equations
Lasers
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Muller Boundary Integral Equations in the Microring Lasers Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muller%20Boundary%20Integral%20Equations%20in%20the%20Microring%20Lasers%20Theory&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Repina,%20A.%20I.&rft.date=2021-06-01&rft.volume=42&rft.issue=6&rft.spage=1402&rft.epage=1412&rft.pages=1402-1412&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S199508022106024X&rft_dat=%3Cproquest_cross%3E2548930830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548930830&rft_id=info:pmid/&rfr_iscdi=true