Loading…
Muller Boundary Integral Equations in the Microring Lasers Theory
The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original...
Saved in:
Published in: | Lobachevskii journal of mathematics 2021-06, Vol.42 (6), p.1402-1412 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903 |
container_end_page | 1412 |
container_issue | 6 |
container_start_page | 1402 |
container_title | Lobachevskii journal of mathematics |
container_volume | 42 |
creator | Repina, A. I. Oktyabrskaya, A. O. Karchevskii, E. M. |
description | The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory. |
doi_str_mv | 10.1134/S199508022106024X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548930830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548930830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHDg7iXMeS1VKpVQMFIktcmKnTRWS1E6G_nscBYkBMd1J7-PuPULuGTwyFkZP70zKGBA4ZyCAR58XZMaQYSCl4Jd-93Aw4tfkxrkjeKIQYkYW26GujaXP7dBoZc900_Rmb1VNV6dB9VXbOFo1tD8Yuq0K29qq2dNUOWMd3R1Ma8-35KpUtTN3P3NOPl5Wu-VrkL6tN8tFGhQ8En3AitBoSBSoJDGIkhdaqwINU5qD4hAmAqM4R8yTgpW5lgqFTkosOQetJYRz8jD5drY9Dcb12bEdbONPZjyOUIaA4chiE8v_6pw1ZdbZ6ssHyxhkY1PZn6a8hk8a143xjP11_l_0DXwZalA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548930830</pqid></control><display><type>article</type><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><source>Springer Nature</source><creator>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</creator><creatorcontrib>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</creatorcontrib><description>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S199508022106024X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Boundary integral method ; Eigenvalues ; Geometry ; Integral equations ; Lasers ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-06, Vol.42 (6), p.1402-1412</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</citedby><cites>FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Repina, A. I.</creatorcontrib><creatorcontrib>Oktyabrskaya, A. O.</creatorcontrib><creatorcontrib>Karchevskii, E. M.</creatorcontrib><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Boundary integral method</subject><subject>Eigenvalues</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHDg7iXMeS1VKpVQMFIktcmKnTRWS1E6G_nscBYkBMd1J7-PuPULuGTwyFkZP70zKGBA4ZyCAR58XZMaQYSCl4Jd-93Aw4tfkxrkjeKIQYkYW26GujaXP7dBoZc900_Rmb1VNV6dB9VXbOFo1tD8Yuq0K29qq2dNUOWMd3R1Ma8-35KpUtTN3P3NOPl5Wu-VrkL6tN8tFGhQ8En3AitBoSBSoJDGIkhdaqwINU5qD4hAmAqM4R8yTgpW5lgqFTkosOQetJYRz8jD5drY9Dcb12bEdbONPZjyOUIaA4chiE8v_6pw1ZdbZ6ssHyxhkY1PZn6a8hk8a143xjP11_l_0DXwZalA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Repina, A. I.</creator><creator>Oktyabrskaya, A. O.</creator><creator>Karchevskii, E. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Muller Boundary Integral Equations in the Microring Lasers Theory</title><author>Repina, A. I. ; Oktyabrskaya, A. O. ; Karchevskii, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Boundary integral method</topic><topic>Eigenvalues</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Repina, A. I.</creatorcontrib><creatorcontrib>Oktyabrskaya, A. O.</creatorcontrib><creatorcontrib>Karchevskii, E. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Repina, A. I.</au><au>Oktyabrskaya, A. O.</au><au>Karchevskii, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muller Boundary Integral Equations in the Microring Lasers Theory</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1402</spage><epage>1412</epage><pages>1402-1412</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199508022106024X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2021-06, Vol.42 (6), p.1402-1412 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2548930830 |
source | Springer Nature |
subjects | Algebra Analysis Boundary integral method Eigenvalues Geometry Integral equations Lasers Mathematical analysis Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | Muller Boundary Integral Equations in the Microring Lasers Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muller%20Boundary%20Integral%20Equations%20in%20the%20Microring%20Lasers%20Theory&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Repina,%20A.%20I.&rft.date=2021-06-01&rft.volume=42&rft.issue=6&rft.spage=1402&rft.epage=1412&rft.pages=1402-1412&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S199508022106024X&rft_dat=%3Cproquest_cross%3E2548930830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-1c3ed07a0a77e8892cddac8e1ad20a20376845b88b7c1fbd9a86d7f8f220dd903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548930830&rft_id=info:pmid/&rfr_iscdi=true |