Loading…
Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees
We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by...
Saved in:
Published in: | Transactions in GIS 2021-06, Vol.25 (3), p.1176-1192 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833 |
container_end_page | 1192 |
container_issue | 3 |
container_start_page | 1176 |
container_title | Transactions in GIS |
container_volume | 25 |
creator | Patel, Jugal Katan, Jeffrey Perez, Liliana Sengupta, Raja |
description | We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques. |
doi_str_mv | 10.1111/tgis.12770 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548994182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548994182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqWw8AsssSGl2E6a2GxVBaVSJQbKHDnOObhK4mA7QAf-Owlh5pY76X33nvQQuqZkQYe5C5XxC8qyjJygGU3SLBJpRk-HO05pRFPOztGF9wdCSJKIbIa-9062XoNzpq1wCcp4Y1tc2L4tpTPgsW2DxRJXYCsnuzejsO-kgnu8qqAN2PX1AMFXcFIFKLF2tsGN_YBmVEsZJO796K1q6b3RRskwJgQH4C_RmZa1h6u_PUevjw_79VO0e95s16tdpFhKSMS5ThIFQscClMo0IzplPJGSpEuhacpAs0IXohBMFhAXJefLgrGYlbSMNY_jObqZfDtn33vwIT_Y3rVDZM6WCRcioZwN1O1EKWe9d6DzzplGumNOST7Wm4_15r_1DjCd4E9Tw_EfMt9vti_Tzw9EmYBl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548994182</pqid></control><display><type>article</type><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><source>Business Source Ultimate</source><source>Wiley</source><creator>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</creator><creatorcontrib>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</creatorcontrib><description>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12770</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Classification ; Data ; Euclidean geometry ; Learning algorithms ; Learning behaviour ; Machine learning ; Remote sensing ; Research facilities ; Segmentation ; Training ; Trees</subject><ispartof>Transactions in GIS, 2021-06, Vol.25 (3), p.1176-1192</ispartof><rights>2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</cites><orcidid>0000-0002-6599-9893 ; 0000-0003-4914-5844 ; 0000-0002-1009-283X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Patel, Jugal</creatorcontrib><creatorcontrib>Katan, Jeffrey</creatorcontrib><creatorcontrib>Perez, Liliana</creatorcontrib><creatorcontrib>Sengupta, Raja</creatorcontrib><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><title>Transactions in GIS</title><description>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</description><subject>Classification</subject><subject>Data</subject><subject>Euclidean geometry</subject><subject>Learning algorithms</subject><subject>Learning behaviour</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Research facilities</subject><subject>Segmentation</subject><subject>Training</subject><subject>Trees</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqWw8AsssSGl2E6a2GxVBaVSJQbKHDnOObhK4mA7QAf-Owlh5pY76X33nvQQuqZkQYe5C5XxC8qyjJygGU3SLBJpRk-HO05pRFPOztGF9wdCSJKIbIa-9062XoNzpq1wCcp4Y1tc2L4tpTPgsW2DxRJXYCsnuzejsO-kgnu8qqAN2PX1AMFXcFIFKLF2tsGN_YBmVEsZJO796K1q6b3RRskwJgQH4C_RmZa1h6u_PUevjw_79VO0e95s16tdpFhKSMS5ThIFQscClMo0IzplPJGSpEuhacpAs0IXohBMFhAXJefLgrGYlbSMNY_jObqZfDtn33vwIT_Y3rVDZM6WCRcioZwN1O1EKWe9d6DzzplGumNOST7Wm4_15r_1DjCd4E9Tw_EfMt9vti_Tzw9EmYBl</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Patel, Jugal</creator><creator>Katan, Jeffrey</creator><creator>Perez, Liliana</creator><creator>Sengupta, Raja</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6599-9893</orcidid><orcidid>https://orcid.org/0000-0003-4914-5844</orcidid><orcidid>https://orcid.org/0000-0002-1009-283X</orcidid></search><sort><creationdate>202106</creationdate><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><author>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Data</topic><topic>Euclidean geometry</topic><topic>Learning algorithms</topic><topic>Learning behaviour</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Research facilities</topic><topic>Segmentation</topic><topic>Training</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Jugal</creatorcontrib><creatorcontrib>Katan, Jeffrey</creatorcontrib><creatorcontrib>Perez, Liliana</creatorcontrib><creatorcontrib>Sengupta, Raja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Jugal</au><au>Katan, Jeffrey</au><au>Perez, Liliana</au><au>Sengupta, Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</atitle><jtitle>Transactions in GIS</jtitle><date>2021-06</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>1176</spage><epage>1192</epage><pages>1176-1192</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12770</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6599-9893</orcidid><orcidid>https://orcid.org/0000-0003-4914-5844</orcidid><orcidid>https://orcid.org/0000-0002-1009-283X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2021-06, Vol.25 (3), p.1176-1192 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2548994182 |
source | Business Source Ultimate; Wiley |
subjects | Classification Data Euclidean geometry Learning algorithms Learning behaviour Machine learning Remote sensing Research facilities Segmentation Training Trees |
title | Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transferring%20decision%20boundaries%20onto%20a%20geographic%20space:%20Agent%20rules%20extracted%20from%20movement%20data%20using%20classification%20trees&rft.jtitle=Transactions%20in%20GIS&rft.au=Patel,%20Jugal&rft.date=2021-06&rft.volume=25&rft.issue=3&rft.spage=1176&rft.epage=1192&rft.pages=1176-1192&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12770&rft_dat=%3Cproquest_cross%3E2548994182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548994182&rft_id=info:pmid/&rfr_iscdi=true |