Loading…

Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees

We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by...

Full description

Saved in:
Bibliographic Details
Published in:Transactions in GIS 2021-06, Vol.25 (3), p.1176-1192
Main Authors: Patel, Jugal, Katan, Jeffrey, Perez, Liliana, Sengupta, Raja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833
container_end_page 1192
container_issue 3
container_start_page 1176
container_title Transactions in GIS
container_volume 25
creator Patel, Jugal
Katan, Jeffrey
Perez, Liliana
Sengupta, Raja
description We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.
doi_str_mv 10.1111/tgis.12770
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2548994182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548994182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqWw8AsssSGl2E6a2GxVBaVSJQbKHDnOObhK4mA7QAf-Owlh5pY76X33nvQQuqZkQYe5C5XxC8qyjJygGU3SLBJpRk-HO05pRFPOztGF9wdCSJKIbIa-9062XoNzpq1wCcp4Y1tc2L4tpTPgsW2DxRJXYCsnuzejsO-kgnu8qqAN2PX1AMFXcFIFKLF2tsGN_YBmVEsZJO796K1q6b3RRskwJgQH4C_RmZa1h6u_PUevjw_79VO0e95s16tdpFhKSMS5ThIFQscClMo0IzplPJGSpEuhacpAs0IXohBMFhAXJefLgrGYlbSMNY_jObqZfDtn33vwIT_Y3rVDZM6WCRcioZwN1O1EKWe9d6DzzplGumNOST7Wm4_15r_1DjCd4E9Tw_EfMt9vti_Tzw9EmYBl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548994182</pqid></control><display><type>article</type><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><source>Business Source Ultimate</source><source>Wiley</source><creator>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</creator><creatorcontrib>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</creatorcontrib><description>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12770</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Classification ; Data ; Euclidean geometry ; Learning algorithms ; Learning behaviour ; Machine learning ; Remote sensing ; Research facilities ; Segmentation ; Training ; Trees</subject><ispartof>Transactions in GIS, 2021-06, Vol.25 (3), p.1176-1192</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</cites><orcidid>0000-0002-6599-9893 ; 0000-0003-4914-5844 ; 0000-0002-1009-283X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Patel, Jugal</creatorcontrib><creatorcontrib>Katan, Jeffrey</creatorcontrib><creatorcontrib>Perez, Liliana</creatorcontrib><creatorcontrib>Sengupta, Raja</creatorcontrib><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><title>Transactions in GIS</title><description>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</description><subject>Classification</subject><subject>Data</subject><subject>Euclidean geometry</subject><subject>Learning algorithms</subject><subject>Learning behaviour</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Research facilities</subject><subject>Segmentation</subject><subject>Training</subject><subject>Trees</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqWw8AsssSGl2E6a2GxVBaVSJQbKHDnOObhK4mA7QAf-Owlh5pY76X33nvQQuqZkQYe5C5XxC8qyjJygGU3SLBJpRk-HO05pRFPOztGF9wdCSJKIbIa-9062XoNzpq1wCcp4Y1tc2L4tpTPgsW2DxRJXYCsnuzejsO-kgnu8qqAN2PX1AMFXcFIFKLF2tsGN_YBmVEsZJO796K1q6b3RRskwJgQH4C_RmZa1h6u_PUevjw_79VO0e95s16tdpFhKSMS5ThIFQscClMo0IzplPJGSpEuhacpAs0IXohBMFhAXJefLgrGYlbSMNY_jObqZfDtn33vwIT_Y3rVDZM6WCRcioZwN1O1EKWe9d6DzzplGumNOST7Wm4_15r_1DjCd4E9Tw_EfMt9vti_Tzw9EmYBl</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Patel, Jugal</creator><creator>Katan, Jeffrey</creator><creator>Perez, Liliana</creator><creator>Sengupta, Raja</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6599-9893</orcidid><orcidid>https://orcid.org/0000-0003-4914-5844</orcidid><orcidid>https://orcid.org/0000-0002-1009-283X</orcidid></search><sort><creationdate>202106</creationdate><title>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</title><author>Patel, Jugal ; Katan, Jeffrey ; Perez, Liliana ; Sengupta, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Data</topic><topic>Euclidean geometry</topic><topic>Learning algorithms</topic><topic>Learning behaviour</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Research facilities</topic><topic>Segmentation</topic><topic>Training</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Jugal</creatorcontrib><creatorcontrib>Katan, Jeffrey</creatorcontrib><creatorcontrib>Perez, Liliana</creatorcontrib><creatorcontrib>Sengupta, Raja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Jugal</au><au>Katan, Jeffrey</au><au>Perez, Liliana</au><au>Sengupta, Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees</atitle><jtitle>Transactions in GIS</jtitle><date>2021-06</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>1176</spage><epage>1192</epage><pages>1176-1192</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>We leverage applied machine learning to determine which environmental features are best associated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour‐selection surface informed by classification trees trained using movement trajectories and remotely sensed environmental features. Atop this surface, we simulate agent movement towards set destinations, constrained by the relative extent to which sets of features are associated with behaviour(s). To achieve our goal, we perform: (a) path segmentation using thresholding to label training data; (b) agent‐rule extraction using classification trees to associate the relative Euclidean distance of a point from environmental features with behaviour; and (c) implementation of this information into an agent‐based model to provide a data‐driven simulation of troop movement. We believe this framework can accommodate intensifications in data velocity, veracity, volume, and variety expected from increasingly sophisticated biologgers and data‐fusion techniques.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12770</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6599-9893</orcidid><orcidid>https://orcid.org/0000-0003-4914-5844</orcidid><orcidid>https://orcid.org/0000-0002-1009-283X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2021-06, Vol.25 (3), p.1176-1192
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_2548994182
source Business Source Ultimate; Wiley
subjects Classification
Data
Euclidean geometry
Learning algorithms
Learning behaviour
Machine learning
Remote sensing
Research facilities
Segmentation
Training
Trees
title Transferring decision boundaries onto a geographic space: Agent rules extracted from movement data using classification trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transferring%20decision%20boundaries%20onto%20a%20geographic%20space:%20Agent%20rules%20extracted%20from%20movement%20data%20using%20classification%20trees&rft.jtitle=Transactions%20in%20GIS&rft.au=Patel,%20Jugal&rft.date=2021-06&rft.volume=25&rft.issue=3&rft.spage=1176&rft.epage=1192&rft.pages=1176-1192&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12770&rft_dat=%3Cproquest_cross%3E2548994182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2600-88f44ce9f39ecc7f20f6284aa0659f162ef2bfb9b92abe3bd885b2232d1d3f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548994182&rft_id=info:pmid/&rfr_iscdi=true