Loading…

An arbitrary high-order Spectral Difference method for the induction equation

•SD-ADER is a new arbitrary high-order method for the induction equation.•It can be seen as a high-order extension of the Constrained Transport (CT) method.•In SD-ADER, the B-field is provably divergence-free (both locally and globally).•Numerical results of SD-ADER are similar to the RKDG with dive...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2021-08, Vol.438, p.110327, Article 110327
Main Authors: Han Veiga, Maria, Velasco-Romero, David A., Wenger, Quentin, Teyssier, Romain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253
cites cdi_FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253
container_end_page
container_issue
container_start_page 110327
container_title Journal of computational physics
container_volume 438
creator Han Veiga, Maria
Velasco-Romero, David A.
Wenger, Quentin
Teyssier, Romain
description •SD-ADER is a new arbitrary high-order method for the induction equation.•It can be seen as a high-order extension of the Constrained Transport (CT) method.•In SD-ADER, the B-field is provably divergence-free (both locally and globally).•Numerical results of SD-ADER are similar to the RKDG with divergence cleaning.•SD-ADER does not need additional equations/variables to control the divergence. We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence-free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves ∇⋅B→=0 exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors.
doi_str_mv 10.1016/j.jcp.2021.110327
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549019869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121002229</els_id><sourcerecordid>2549019869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hF4tySj6ZtxGkan9IQB-ActYlDU21Nl7ZI_HtSlTMnW7Zf2--D0DUlKSU0v23TVvcpI4ymlBLOihO0okSShBU0P0UrEjuJlJKeo4thaAkhpcjKFXrddLgKtRtDFX5w476axAcDAb_3oGNxj--dtRCg04APMDbeYOsDHhvArjOTHp3vMBynak4u0Zmt9gNc_cU1-nx8-Ng-J7u3p5ftZpdozsSY0NqKmsuiBM1sbSoAxqUhBijVNSF5wW3BRWGttlzXIj4quOSclZmsBGOCr9HNsrcP_jjBMKrWT6GLJxUTmSRUlrmMU3SZ0sEPQwCr-uAO0aeiRM3UVKsiNTVTUwu1qLlbNBDf_3YQ1KDdbN64EIEo490_6l-kJnR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549019869</pqid></control><display><type>article</type><title>An arbitrary high-order Spectral Difference method for the induction equation</title><source>ScienceDirect Freedom Collection</source><creator>Han Veiga, Maria ; Velasco-Romero, David A. ; Wenger, Quentin ; Teyssier, Romain</creator><creatorcontrib>Han Veiga, Maria ; Velasco-Romero, David A. ; Wenger, Quentin ; Teyssier, Romain</creatorcontrib><description>•SD-ADER is a new arbitrary high-order method for the induction equation.•It can be seen as a high-order extension of the Constrained Transport (CT) method.•In SD-ADER, the B-field is provably divergence-free (both locally and globally).•Numerical results of SD-ADER are similar to the RKDG with divergence cleaning.•SD-ADER does not need additional equations/variables to control the divergence. We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence-free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves ∇⋅B→=0 exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110327</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Constraints ; Divergence ; Divergence-free ; High-order ; Induction equation ; Numerical analysis ; Runge-Kutta method ; Spectral Difference ; Time integration</subject><ispartof>Journal of computational physics, 2021-08, Vol.438, p.110327, Article 110327</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253</citedby><cites>FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253</cites><orcidid>0000-0001-7689-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Han Veiga, Maria</creatorcontrib><creatorcontrib>Velasco-Romero, David A.</creatorcontrib><creatorcontrib>Wenger, Quentin</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><title>An arbitrary high-order Spectral Difference method for the induction equation</title><title>Journal of computational physics</title><description>•SD-ADER is a new arbitrary high-order method for the induction equation.•It can be seen as a high-order extension of the Constrained Transport (CT) method.•In SD-ADER, the B-field is provably divergence-free (both locally and globally).•Numerical results of SD-ADER are similar to the RKDG with divergence cleaning.•SD-ADER does not need additional equations/variables to control the divergence. We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence-free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves ∇⋅B→=0 exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors.</description><subject>Computational physics</subject><subject>Constraints</subject><subject>Divergence</subject><subject>Divergence-free</subject><subject>High-order</subject><subject>Induction equation</subject><subject>Numerical analysis</subject><subject>Runge-Kutta method</subject><subject>Spectral Difference</subject><subject>Time integration</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hF4tySj6ZtxGkan9IQB-ActYlDU21Nl7ZI_HtSlTMnW7Zf2--D0DUlKSU0v23TVvcpI4ymlBLOihO0okSShBU0P0UrEjuJlJKeo4thaAkhpcjKFXrddLgKtRtDFX5w476axAcDAb_3oGNxj--dtRCg04APMDbeYOsDHhvArjOTHp3vMBynak4u0Zmt9gNc_cU1-nx8-Ng-J7u3p5ftZpdozsSY0NqKmsuiBM1sbSoAxqUhBijVNSF5wW3BRWGttlzXIj4quOSclZmsBGOCr9HNsrcP_jjBMKrWT6GLJxUTmSRUlrmMU3SZ0sEPQwCr-uAO0aeiRM3UVKsiNTVTUwu1qLlbNBDf_3YQ1KDdbN64EIEo490_6l-kJnR0</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Han Veiga, Maria</creator><creator>Velasco-Romero, David A.</creator><creator>Wenger, Quentin</creator><creator>Teyssier, Romain</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid></search><sort><creationdate>20210801</creationdate><title>An arbitrary high-order Spectral Difference method for the induction equation</title><author>Han Veiga, Maria ; Velasco-Romero, David A. ; Wenger, Quentin ; Teyssier, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational physics</topic><topic>Constraints</topic><topic>Divergence</topic><topic>Divergence-free</topic><topic>High-order</topic><topic>Induction equation</topic><topic>Numerical analysis</topic><topic>Runge-Kutta method</topic><topic>Spectral Difference</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han Veiga, Maria</creatorcontrib><creatorcontrib>Velasco-Romero, David A.</creatorcontrib><creatorcontrib>Wenger, Quentin</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han Veiga, Maria</au><au>Velasco-Romero, David A.</au><au>Wenger, Quentin</au><au>Teyssier, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An arbitrary high-order Spectral Difference method for the induction equation</atitle><jtitle>Journal of computational physics</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>438</volume><spage>110327</spage><pages>110327-</pages><artnum>110327</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•SD-ADER is a new arbitrary high-order method for the induction equation.•It can be seen as a high-order extension of the Constrained Transport (CT) method.•In SD-ADER, the B-field is provably divergence-free (both locally and globally).•Numerical results of SD-ADER are similar to the RKDG with divergence cleaning.•SD-ADER does not need additional equations/variables to control the divergence. We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence-free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves ∇⋅B→=0 exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110327</doi><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-08, Vol.438, p.110327, Article 110327
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2549019869
source ScienceDirect Freedom Collection
subjects Computational physics
Constraints
Divergence
Divergence-free
High-order
Induction equation
Numerical analysis
Runge-Kutta method
Spectral Difference
Time integration
title An arbitrary high-order Spectral Difference method for the induction equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20arbitrary%20high-order%20Spectral%20Difference%20method%20for%20the%20induction%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Han%20Veiga,%20Maria&rft.date=2021-08-01&rft.volume=438&rft.spage=110327&rft.pages=110327-&rft.artnum=110327&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110327&rft_dat=%3Cproquest_cross%3E2549019869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-1bf5b3978ec2fbdaee239d0de11cb00673f7357ffcf3cb5548539332849a52253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549019869&rft_id=info:pmid/&rfr_iscdi=true