Loading…
Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts
In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$ -rigid groups. Invent. Math. 170(2) (2007), 243–295]. Let $G$ be a finitely generated group tha...
Saved in:
Published in: | Ergodic theory and dynamical systems 2021-08, Vol.41 (8), p.2274-2293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3 |
container_end_page | 2293 |
container_issue | 8 |
container_start_page | 2274 |
container_title | Ergodic theory and dynamical systems |
container_volume | 41 |
creator | CHUNG, NHAN-PHU JIANG, YONGLE |
description | In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of
$w$
-rigid groups. Invent. Math. 170(2) (2007), 243–295]. Let
$G$
be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let
$H$
be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of
$G$
with value in
$H$
is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math. 58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann. 344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc. 362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology 44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of
$g$
-genus surfaces with
$p$
-punches,
$g\geq 2,p\geq 0$
; Richard Thompson groups
$F,T,V$
;
$\text{Aut}(F_{n})$
,
$\text{Out}(F_{n})$
,
$n\geq 3$
; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann. 368(3–4) (2017), 1109–1132]. |
doi_str_mv | 10.1017/etds.2020.44 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549596793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2020_44</cupid><sourcerecordid>2549596793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3</originalsourceid><addsrcrecordid>eNptkEtOwzAURS0EEqUwYwGWmDbh-ZM4GaLyKVIlJnRsxZ8UV2lcbAepG2MDbIxUrcSE0X2D8-6VDkK3BHICRNzbZGJOgULO-RmaEF7WGedEnKMJEM4yVhXiEl3FuAEARkQxQatH92XD2vbazvDQGxeTD8n5Hje9wYuf787YgLXvk-sHP8Tx1HvdWRyHnQ3BrZ1xaY9bH3A7dB2OH65N8RpdtE0X7c0pp2j1_PQ-X2TLt5fX-cMy0wxoypQBXlolBDO2ripGdEsaXnNaCQGUMspEqRpVCA0NUVoTDtS0AKqmtqWlYlN0d-zdBf852Jjkxg-hHyclLXhd1KWo2UjNjpQOPsZgW7kLbtuEvSQgD-LkQZw8iJOcj3h-wputCs6s7V_rvw-_tlhyMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549596793</pqid></control><display><type>article</type><title>Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>CHUNG, NHAN-PHU ; JIANG, YONGLE</creator><creatorcontrib>CHUNG, NHAN-PHU ; JIANG, YONGLE</creatorcontrib><description>In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of
$w$
-rigid groups. Invent. Math. 170(2) (2007), 243–295]. Let
$G$
be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let
$H$
be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of
$G$
with value in
$H$
is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math. 58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann. 344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc. 362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology 44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of
$g$
-genus surfaces with
$p$
-punches,
$g\geq 2,p\geq 0$
; Richard Thompson groups
$F,T,V$
;
$\text{Aut}(F_{n})$
,
$\text{Out}(F_{n})$
,
$n\geq 3$
; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann. 368(3–4) (2017), 1109–1132].</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2020.44</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cones ; Homomorphisms ; Lattices (mathematics) ; Lie groups ; Metric space ; Original Article ; Punches ; Topology</subject><ispartof>Ergodic theory and dynamical systems, 2021-08, Vol.41 (8), p.2274-2293</ispartof><rights>The Author(s) 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3</citedby><cites>FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3</cites><orcidid>0000-0002-0854-3136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385720000449/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,72730</link.rule.ids></links><search><creatorcontrib>CHUNG, NHAN-PHU</creatorcontrib><creatorcontrib>JIANG, YONGLE</creatorcontrib><title>Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of
$w$
-rigid groups. Invent. Math. 170(2) (2007), 243–295]. Let
$G$
be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let
$H$
be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of
$G$
with value in
$H$
is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math. 58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann. 344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc. 362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology 44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of
$g$
-genus surfaces with
$p$
-punches,
$g\geq 2,p\geq 0$
; Richard Thompson groups
$F,T,V$
;
$\text{Aut}(F_{n})$
,
$\text{Out}(F_{n})$
,
$n\geq 3$
; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann. 368(3–4) (2017), 1109–1132].</description><subject>Cones</subject><subject>Homomorphisms</subject><subject>Lattices (mathematics)</subject><subject>Lie groups</subject><subject>Metric space</subject><subject>Original Article</subject><subject>Punches</subject><subject>Topology</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkEtOwzAURS0EEqUwYwGWmDbh-ZM4GaLyKVIlJnRsxZ8UV2lcbAepG2MDbIxUrcSE0X2D8-6VDkK3BHICRNzbZGJOgULO-RmaEF7WGedEnKMJEM4yVhXiEl3FuAEARkQxQatH92XD2vbazvDQGxeTD8n5Hje9wYuf787YgLXvk-sHP8Tx1HvdWRyHnQ3BrZ1xaY9bH3A7dB2OH65N8RpdtE0X7c0pp2j1_PQ-X2TLt5fX-cMy0wxoypQBXlolBDO2ripGdEsaXnNaCQGUMspEqRpVCA0NUVoTDtS0AKqmtqWlYlN0d-zdBf852Jjkxg-hHyclLXhd1KWo2UjNjpQOPsZgW7kLbtuEvSQgD-LkQZw8iJOcj3h-wputCs6s7V_rvw-_tlhyMw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>CHUNG, NHAN-PHU</creator><creator>JIANG, YONGLE</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0854-3136</orcidid></search><sort><creationdate>20210801</creationdate><title>Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts</title><author>CHUNG, NHAN-PHU ; JIANG, YONGLE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cones</topic><topic>Homomorphisms</topic><topic>Lattices (mathematics)</topic><topic>Lie groups</topic><topic>Metric space</topic><topic>Original Article</topic><topic>Punches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHUNG, NHAN-PHU</creatorcontrib><creatorcontrib>JIANG, YONGLE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHUNG, NHAN-PHU</au><au>JIANG, YONGLE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>41</volume><issue>8</issue><spage>2274</spage><epage>2293</epage><pages>2274-2293</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of
$w$
-rigid groups. Invent. Math. 170(2) (2007), 243–295]. Let
$G$
be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let
$H$
be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of
$G$
with value in
$H$
is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math. 58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann. 344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc. 362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology 44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of
$g$
-genus surfaces with
$p$
-punches,
$g\geq 2,p\geq 0$
; Richard Thompson groups
$F,T,V$
;
$\text{Aut}(F_{n})$
,
$\text{Out}(F_{n})$
,
$n\geq 3$
; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann. 368(3–4) (2017), 1109–1132].</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2020.44</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0854-3136</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2021-08, Vol.41 (8), p.2274-2293 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2549596793 |
source | Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list) |
subjects | Cones Homomorphisms Lattices (mathematics) Lie groups Metric space Original Article Punches Topology |
title | Divergence, undistortion and Hölder continuous cocycle superrigidity for full shifts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence,%20undistortion%20and%20H%C3%B6lder%20continuous%20cocycle%20superrigidity%20for%20full%20shifts&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CHUNG,%20NHAN-PHU&rft.date=2021-08-01&rft.volume=41&rft.issue=8&rft.spage=2274&rft.epage=2293&rft.pages=2274-2293&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2020.44&rft_dat=%3Cproquest_cross%3E2549596793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-bd046eb773de98831cf1a494287702232376bab57c0a1bcc1402df00b92ef26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549596793&rft_id=info:pmid/&rft_cupid=10_1017_etds_2020_44&rfr_iscdi=true |