Loading…
Greenhouse gas balance of a semi-natural peatbog in northern Scotland
Northern peatlands have been accumulating organic matter since the start of the Holocene, and are now a substantial store of terrestrial carbon. However, their current status as carbon sinks is less clear, because of the possible effects of climate change, air pollution, grazing and drainage etc., a...
Saved in:
Published in: | Environmental research letters 2015-09, Vol.10 (9), p.94019 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Northern peatlands have been accumulating organic matter since the start of the Holocene, and are now a substantial store of terrestrial carbon. However, their current status as carbon sinks is less clear, because of the possible effects of climate change, air pollution, grazing and drainage etc., and the difficulties of accurate measurement with suitable time resolution. Such measurements are particularly lacking in the UK. Here, we present multi-year eddy covariance measurements of the carbon fluxes at a relatively undisturbed ombrotrophic blanket bog in the Flow Country of northern Scotland. The site consistently acted as a moderate sink for CO2 over all the measurement years (mean net ecosystem exchange (NEE) of −114 g C m−2 y−1), similar in magnitude to other measurements in the boreal and tundra zones, and rather higher than the existing measurements at other sites in the UK and Ireland. Generally, the NEE of CO2 was relatively insensitive to moderate inter-annual variations in weather. Non-CO2 losses comprised 11% of gross primary production, mainly from methane emissions. Accounting for these terms, the net ecosystem carbon balance was −50 g C-CO2 eq m−2 y−1. The contemporary carbon sink was larger than estimates from local peat cores, based on peat accumulation over the last several thousand years, but in the middle of the range of estimates which used spheroidal carbonaceous particles to estimate peat accumulation rates over the last century. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/10/9/094019 |