Loading…

A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array

Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and communication capabilities. To solve the antenna array optimization...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Main Authors: Liang, Qiankun, Chen, Bin, Wu, Huaning, Ma, Chaoyi, Li, Senyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963
cites cdi_FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963
container_end_page
container_issue 1
container_start_page
container_title Wireless communications and mobile computing
container_volume 2021
creator Liang, Qiankun
Chen, Bin
Wu, Huaning
Ma, Chaoyi
Li, Senyou
description Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and communication capabilities. To solve the antenna array optimization problem, a new intelligent optimization algorithm called sparrow search algorithm (SSA) and its modification are applied to the electromagnetics and antenna community for the first time in this paper. Firstly, aimed at the shortcomings of SSA, such as being easy to fall into local optimum and limited convergence speed, a novel modified algorithm combining a homogeneous chaotic system, adaptive inertia weight, and improved boundary constraint is proposed. Secondly, three types of benchmark test functions are calculated to verify the effectiveness of the modified algorithm. Then, the element positions and excitation amplitudes of three different design examples of the linear antenna array (LAA) are optimized. The numerical results indicate that, compared with the other six algorithms, the modified algorithm has more advantages in terms of convergence accuracy, convergence speed, and stability, whether it is calculating the benchmark test functions or reducing the maximum SLL of the LAA. Finally, the electromagnetic (EM) simulation results obtained by FEKO also show that it can achieve a satisfactory beam pattern performance in practical arrays.
doi_str_mv 10.1155/2021/9915420
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550176928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550176928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs7f0DApY7No5l0lkPxBaOC1fWQJjc2ZZqMmaml_97UFpduzr1wP849HIQuKbmlVIgRI4yOioKKMSNHaEAFJ9kkl_L4b8-LU3TWdUtCCE_wAIUSv4RvaPBzMM46MHjWqhjDBs9ARb3AZfMZousXK7xJisu2bZxWvQseO49nzgCuwjwJ7FzewKz17zFYXDmfPHDpe_Be4TJGtT1HJ1Y1HVwc5hB93N-9Tx-z6vXhaVpWmeZc9pmhkmojuRnnTOdiLomgHFJ-mhOrhIUxEKWBGWqVIWAmlHGpNWVWalYUOR-iq71vG8PXGrq-XoZ19OllzYQgVOYFmyTqZk_pGLougq3b6FYqbmtK6l2l9a7S-lBpwq_3-MJ5ozbuf_oHgt91Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550176928</pqid></control><display><type>article</type><title>A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Liang, Qiankun ; Chen, Bin ; Wu, Huaning ; Ma, Chaoyi ; Li, Senyou</creator><contributor>Zaman, Fawad ; Fawad Zaman</contributor><creatorcontrib>Liang, Qiankun ; Chen, Bin ; Wu, Huaning ; Ma, Chaoyi ; Li, Senyou ; Zaman, Fawad ; Fawad Zaman</creatorcontrib><description>Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and communication capabilities. To solve the antenna array optimization problem, a new intelligent optimization algorithm called sparrow search algorithm (SSA) and its modification are applied to the electromagnetics and antenna community for the first time in this paper. Firstly, aimed at the shortcomings of SSA, such as being easy to fall into local optimum and limited convergence speed, a novel modified algorithm combining a homogeneous chaotic system, adaptive inertia weight, and improved boundary constraint is proposed. Secondly, three types of benchmark test functions are calculated to verify the effectiveness of the modified algorithm. Then, the element positions and excitation amplitudes of three different design examples of the linear antenna array (LAA) are optimized. The numerical results indicate that, compared with the other six algorithms, the modified algorithm has more advantages in terms of convergence accuracy, convergence speed, and stability, whether it is calculating the benchmark test functions or reducing the maximum SLL of the LAA. Finally, the electromagnetic (EM) simulation results obtained by FEKO also show that it can achieve a satisfactory beam pattern performance in practical arrays.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/9915420</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Adaptive systems ; Antenna arrays ; Antennas ; Benchmarks ; Chaos theory ; Convergence ; Energy ; Food ; Foraging behavior ; Mathematical analysis ; Normal distribution ; Optimization ; Optimization algorithms ; Population ; Search algorithms ; Sidelobe reduction ; Sidelobes ; System effectiveness ; Wireless communication systems</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Qiankun Liang et al.</rights><rights>Copyright © 2021 Qiankun Liang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963</citedby><cites>FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963</cites><orcidid>0000-0002-9398-7662 ; 0000-0003-0648-9188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550176928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550176928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Zaman, Fawad</contributor><contributor>Fawad Zaman</contributor><creatorcontrib>Liang, Qiankun</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Wu, Huaning</creatorcontrib><creatorcontrib>Ma, Chaoyi</creatorcontrib><creatorcontrib>Li, Senyou</creatorcontrib><title>A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array</title><title>Wireless communications and mobile computing</title><description>Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and communication capabilities. To solve the antenna array optimization problem, a new intelligent optimization algorithm called sparrow search algorithm (SSA) and its modification are applied to the electromagnetics and antenna community for the first time in this paper. Firstly, aimed at the shortcomings of SSA, such as being easy to fall into local optimum and limited convergence speed, a novel modified algorithm combining a homogeneous chaotic system, adaptive inertia weight, and improved boundary constraint is proposed. Secondly, three types of benchmark test functions are calculated to verify the effectiveness of the modified algorithm. Then, the element positions and excitation amplitudes of three different design examples of the linear antenna array (LAA) are optimized. The numerical results indicate that, compared with the other six algorithms, the modified algorithm has more advantages in terms of convergence accuracy, convergence speed, and stability, whether it is calculating the benchmark test functions or reducing the maximum SLL of the LAA. Finally, the electromagnetic (EM) simulation results obtained by FEKO also show that it can achieve a satisfactory beam pattern performance in practical arrays.</description><subject>Adaptive systems</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Benchmarks</subject><subject>Chaos theory</subject><subject>Convergence</subject><subject>Energy</subject><subject>Food</subject><subject>Foraging behavior</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Search algorithms</subject><subject>Sidelobe reduction</subject><subject>Sidelobes</subject><subject>System effectiveness</subject><subject>Wireless communication systems</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEtLAzEUhYMoWKs7f0DApY7No5l0lkPxBaOC1fWQJjc2ZZqMmaml_97UFpduzr1wP849HIQuKbmlVIgRI4yOioKKMSNHaEAFJ9kkl_L4b8-LU3TWdUtCCE_wAIUSv4RvaPBzMM46MHjWqhjDBs9ARb3AZfMZousXK7xJisu2bZxWvQseO49nzgCuwjwJ7FzewKz17zFYXDmfPHDpe_Be4TJGtT1HJ1Y1HVwc5hB93N-9Tx-z6vXhaVpWmeZc9pmhkmojuRnnTOdiLomgHFJ-mhOrhIUxEKWBGWqVIWAmlHGpNWVWalYUOR-iq71vG8PXGrq-XoZ19OllzYQgVOYFmyTqZk_pGLougq3b6FYqbmtK6l2l9a7S-lBpwq_3-MJ5ozbuf_oHgt91Og</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liang, Qiankun</creator><creator>Chen, Bin</creator><creator>Wu, Huaning</creator><creator>Ma, Chaoyi</creator><creator>Li, Senyou</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9398-7662</orcidid><orcidid>https://orcid.org/0000-0003-0648-9188</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array</title><author>Liang, Qiankun ; Chen, Bin ; Wu, Huaning ; Ma, Chaoyi ; Li, Senyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Benchmarks</topic><topic>Chaos theory</topic><topic>Convergence</topic><topic>Energy</topic><topic>Food</topic><topic>Foraging behavior</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Search algorithms</topic><topic>Sidelobe reduction</topic><topic>Sidelobes</topic><topic>System effectiveness</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Qiankun</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Wu, Huaning</creatorcontrib><creatorcontrib>Ma, Chaoyi</creatorcontrib><creatorcontrib>Li, Senyou</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Qiankun</au><au>Chen, Bin</au><au>Wu, Huaning</au><au>Ma, Chaoyi</au><au>Li, Senyou</au><au>Zaman, Fawad</au><au>Fawad Zaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Antenna arrays play an increasingly important role in modern wireless communication systems. However, how to effectively suppress and optimize the side lobe level (SLL) of antenna arrays is critical for communication performance and communication capabilities. To solve the antenna array optimization problem, a new intelligent optimization algorithm called sparrow search algorithm (SSA) and its modification are applied to the electromagnetics and antenna community for the first time in this paper. Firstly, aimed at the shortcomings of SSA, such as being easy to fall into local optimum and limited convergence speed, a novel modified algorithm combining a homogeneous chaotic system, adaptive inertia weight, and improved boundary constraint is proposed. Secondly, three types of benchmark test functions are calculated to verify the effectiveness of the modified algorithm. Then, the element positions and excitation amplitudes of three different design examples of the linear antenna array (LAA) are optimized. The numerical results indicate that, compared with the other six algorithms, the modified algorithm has more advantages in terms of convergence accuracy, convergence speed, and stability, whether it is calculating the benchmark test functions or reducing the maximum SLL of the LAA. Finally, the electromagnetic (EM) simulation results obtained by FEKO also show that it can achieve a satisfactory beam pattern performance in practical arrays.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2021/9915420</doi><orcidid>https://orcid.org/0000-0002-9398-7662</orcidid><orcidid>https://orcid.org/0000-0003-0648-9188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2021, Vol.2021 (1)
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2550176928
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access
subjects Adaptive systems
Antenna arrays
Antennas
Benchmarks
Chaos theory
Convergence
Energy
Food
Foraging behavior
Mathematical analysis
Normal distribution
Optimization
Optimization algorithms
Population
Search algorithms
Sidelobe reduction
Sidelobes
System effectiveness
Wireless communication systems
title A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Modified%20Sparrow%20Search%20Algorithm%20with%20Application%20in%20Side%20Lobe%20Level%20Reduction%20of%20Linear%20Antenna%20Array&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Liang,%20Qiankun&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/9915420&rft_dat=%3Cproquest_cross%3E2550176928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-d171cd73d462c65b70513e866160fa5fe4e0ace2d1fad0ed81237cc12f7c29963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550176928&rft_id=info:pmid/&rfr_iscdi=true