Loading…

Singular curve and critical curve for doubly nonlinear Lane–Emden type equations

This paper is concerned with singular curve and critical curve for the periodic doubly nonlinear Lane–Emden type equation ∂u∂t−div(|∇um|p−2∇um)=a(x,t)uq. In 2010, under a convex assumption on the domain Ω, Wang et al. (2010) considered a partial case of p−1

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10304-10320
Main Authors: Huang, Haochuan, Huang, Rui, Yin, Jingxue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23
cites cdi_FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23
container_end_page 10320
container_issue 13
container_start_page 10304
container_title Mathematical methods in the applied sciences
container_volume 44
creator Huang, Haochuan
Huang, Rui
Yin, Jingxue
description This paper is concerned with singular curve and critical curve for the periodic doubly nonlinear Lane–Emden type equation ∂u∂t−div(|∇um|p−2∇um)=a(x,t)uq. In 2010, under a convex assumption on the domain Ω, Wang et al. (2010) considered a partial case of p−1
doi_str_mv 10.1002/mma.7408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550182424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23</originalsourceid><addsrcrecordid>eNp10M1Kw0AQwPFFFKxV8BECXrykzk42X8dS_IIWwY_zspudSEqyaXcTJTffwTf0SUxtr54Ghh8z8GfsksOMA-BN06hZKiA7YhMOeR5ykSbHbAI8hVAgF6fszPs1AGSc44Q9v1T2va-VC4refVCgrAkKV3VVoerDqmxdYNpe10NgW1tXlka9VJZ-vr5vG0M26IYNBbTtVVe11p-zk1LVni4Oc8re7m5fFw_h8un-cTFfhgXmURbmeUKUcIxLkyZRijFkkBnSZZ4kagSgYyOUKCKNujAiMhFq0Kh4mSKhwmjKrvZ3N67d9uQ7uW57Z8eXEuMYeIYCxaiu96pwrfeOSrlxVaPcIDnIXTE5FpO7YiMN9_Szqmn418nVav7nfwG3W21G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182424</pqid></control><display><type>article</type><title>Singular curve and critical curve for doubly nonlinear Lane–Emden type equations</title><source>Wiley</source><creator>Huang, Haochuan ; Huang, Rui ; Yin, Jingxue</creator><creatorcontrib>Huang, Haochuan ; Huang, Rui ; Yin, Jingxue</creatorcontrib><description>This paper is concerned with singular curve and critical curve for the periodic doubly nonlinear Lane–Emden type equation ∂u∂t−div(|∇um|p−2∇um)=a(x,t)uq. In 2010, under a convex assumption on the domain Ω, Wang et al. (2010) considered a partial case of p−1&lt;qm&lt;p−1+p−1mN. While, there are no results about the cases of qm≤p−1 and qm≥p−1+p−1mN before the present work. In this paper, we fill the gap for these two cases and give a total classification for the exponents. Furthermore, by constructing a special blow‐up sequence, we remove the convex assumption on the domain Ω, not only for the partial case considered in Wang et al. (2010) but also for other remaining cases.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7408</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>critical curve ; Domains ; Lane–Emden equation ; singular curve</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10304-10320</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23</citedby><cites>FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23</cites><orcidid>0000-0001-5094-8818 ; 0000-0001-9708-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Haochuan</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Yin, Jingxue</creatorcontrib><title>Singular curve and critical curve for doubly nonlinear Lane–Emden type equations</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with singular curve and critical curve for the periodic doubly nonlinear Lane–Emden type equation ∂u∂t−div(|∇um|p−2∇um)=a(x,t)uq. In 2010, under a convex assumption on the domain Ω, Wang et al. (2010) considered a partial case of p−1&lt;qm&lt;p−1+p−1mN. While, there are no results about the cases of qm≤p−1 and qm≥p−1+p−1mN before the present work. In this paper, we fill the gap for these two cases and give a total classification for the exponents. Furthermore, by constructing a special blow‐up sequence, we remove the convex assumption on the domain Ω, not only for the partial case considered in Wang et al. (2010) but also for other remaining cases.</description><subject>critical curve</subject><subject>Domains</subject><subject>Lane–Emden equation</subject><subject>singular curve</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AQwPFFFKxV8BECXrykzk42X8dS_IIWwY_zspudSEqyaXcTJTffwTf0SUxtr54Ghh8z8GfsksOMA-BN06hZKiA7YhMOeR5ykSbHbAI8hVAgF6fszPs1AGSc44Q9v1T2va-VC4refVCgrAkKV3VVoerDqmxdYNpe10NgW1tXlka9VJZ-vr5vG0M26IYNBbTtVVe11p-zk1LVni4Oc8re7m5fFw_h8un-cTFfhgXmURbmeUKUcIxLkyZRijFkkBnSZZ4kagSgYyOUKCKNujAiMhFq0Kh4mSKhwmjKrvZ3N67d9uQ7uW57Z8eXEuMYeIYCxaiu96pwrfeOSrlxVaPcIDnIXTE5FpO7YiMN9_Szqmn418nVav7nfwG3W21G</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Huang, Haochuan</creator><creator>Huang, Rui</creator><creator>Yin, Jingxue</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5094-8818</orcidid><orcidid>https://orcid.org/0000-0001-9708-3460</orcidid></search><sort><creationdate>20210915</creationdate><title>Singular curve and critical curve for doubly nonlinear Lane–Emden type equations</title><author>Huang, Haochuan ; Huang, Rui ; Yin, Jingxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>critical curve</topic><topic>Domains</topic><topic>Lane–Emden equation</topic><topic>singular curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Haochuan</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Yin, Jingxue</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Haochuan</au><au>Huang, Rui</au><au>Yin, Jingxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular curve and critical curve for doubly nonlinear Lane–Emden type equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10304</spage><epage>10320</epage><pages>10304-10320</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with singular curve and critical curve for the periodic doubly nonlinear Lane–Emden type equation ∂u∂t−div(|∇um|p−2∇um)=a(x,t)uq. In 2010, under a convex assumption on the domain Ω, Wang et al. (2010) considered a partial case of p−1&lt;qm&lt;p−1+p−1mN. While, there are no results about the cases of qm≤p−1 and qm≥p−1+p−1mN before the present work. In this paper, we fill the gap for these two cases and give a total classification for the exponents. Furthermore, by constructing a special blow‐up sequence, we remove the convex assumption on the domain Ω, not only for the partial case considered in Wang et al. (2010) but also for other remaining cases.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7408</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5094-8818</orcidid><orcidid>https://orcid.org/0000-0001-9708-3460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10304-10320
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2550182424
source Wiley
subjects critical curve
Domains
Lane–Emden equation
singular curve
title Singular curve and critical curve for doubly nonlinear Lane–Emden type equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20curve%20and%20critical%20curve%20for%20doubly%20nonlinear%20Lane%E2%80%93Emden%20type%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Huang,%20Haochuan&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10304&rft.epage=10320&rft.pages=10304-10320&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7408&rft_dat=%3Cproquest_cross%3E2550182424%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-996ee6125fd7637250808debf966a9380b5d4a4c3b2bcd43d32b0b2a1f72e2a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550182424&rft_id=info:pmid/&rfr_iscdi=true