Loading…

Copper Adsorption by Magnetized Pine-Needle Biochar

The Cu(II) adsorption from aqueous solutions by magnetic biochar obtained from pine needles has been studied by means of batch-type experiments. The biochar fibers have been magnetized prior (pncm: carbonized-magnetized pine needles) and after oxidation (pncom: carbonized-oxidized-magnetized pine ne...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2019-12, Vol.7 (12), p.903
Main Authors: Nicolaou, Eleni, Philippou, Katerina, Anastopoulos, Ioannis, Pashalidis, Ioannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Cu(II) adsorption from aqueous solutions by magnetic biochar obtained from pine needles has been studied by means of batch-type experiments. The biochar fibers have been magnetized prior (pncm: carbonized-magnetized pine needles) and after oxidation (pncom: carbonized-oxidized-magnetized pine needles) and have been used as adsorbents to study the presence of carboxylic moieties on the magnetization and following adsorption process. The effect of pH (2–10), initial metal concentration (10−5–9·10−3 mol·L−1) and contact time (0–60 min) has been studied by varying the respective parameter, and the adsorbents have been characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) measurements prior and after Cu(II)-adsorption. FTIR measurements were performed to investigate the formation of surface species and XRD measurements to record possible solid phase formation and characterize formed solids, including the evaluation of their average crystal size. The data obtained from the batch-type studies show that the oxidized magnetic biochar (pncom) presents significantly higher adsorption capacity (1.0 mmol g−1) compared to pncm (0.4 mmol g−1), which is ascribed to the synergistic effect of the carboxylic moieties present on the pncom surface, and the adsorption process follows the pseudo-second order kinetics. On the other hand, the FTIR spectra prove the formation of inner-sphere complexes and XRD diffractograms indicate Cu(II) solid phase formation at pH 6 and increased metal ion concentrations.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr7120903