Loading…
On Ripples—A Boundary Layer-Theoretical Definition
Once the first initial ripples have developed, they form according to the actual flow forces and sediment properties. In this paper, a semianalytical approach to determine the length of the developed ripples is presented. The theory assumes initial disturbances at the bed surface and corresponding f...
Saved in:
Published in: | Water (Basel) 2021-04, Vol.13 (7), p.892 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Once the first initial ripples have developed, they form according to the actual flow forces and sediment properties. In this paper, a semianalytical approach to determine the length of the developed ripples is presented. The theory assumes initial disturbances at the bed surface and corresponding flow separations resulting from an individual respective boundary layer. What causes the initial rhythmic perturbations is not the subject of this paper. Based on boundary layer theory, this approach explains a possible physical background for the existence and length of developed ripples in cohesion-free sediments. At the same time, the approach provides a distinction from dunes: ripples are sand waves affected by a viscous sublayer, and dunes are sand waves where this is not the case. Applications to Earth, Mars, and Titan are shown. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w13070892 |