Loading…

Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium

Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment b...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2019-11, Vol.11 (11), p.2336
Main Authors: Beretta, Gabriele, Daghio, Matteo, Espinoza Tofalos, Anna, Franzetti, Andrea, Mastorgio, Andrea Filippo, Saponaro, Sabrina, Sezenna, Elena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13
cites cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13
container_end_page
container_issue 11
container_start_page 2336
container_title Water (Basel)
container_volume 11
creator Beretta, Gabriele
Daghio, Matteo
Espinoza Tofalos, Anna
Franzetti, Andrea
Mastorgio, Andrea Filippo
Saponaro, Sabrina
Sezenna, Elena
description Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.
doi_str_mv 10.3390/w11112336
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2550464098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810509737</galeid><sourcerecordid>A810509737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT34DxY8eVjN126SYy3WCgVF6nnJZidtyu6mJlur_96UijhzmGF4b-bNQ-ia4DvGFL4_kBSUsfIMjSgWLOeck_N__SWaxLjFKbiSssAjNH8Nfh0gxmzlDzo0MXtwHlowQ_BmA50zus3eoIPG6cH5PvM2W8CX_tQt9EM22wTfuX13hS6sbiNMfusYvc8fV7NFvnx5ep5Nl7lhjAw5J0oTrFUpaa1KJRgVAprSgq4LqbWRVinDma2tLRpKNYdalLQBKgorTUPYGN2c9u6C_9hDHKqt34c-naxoUWBecqxkQt2dUOuksnK99UPQJmVzfMj3YF2aTyXBBU4iRCLcnggm-BgD2GoXXKfDd0VwdbS2-rOW_QB8v2rL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550464098</pqid></control><display><type>article</type><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><source>Publicly Available Content Database</source><creator>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</creator><creatorcontrib>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</creatorcontrib><description>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w11112336</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquifers ; Bioelectrochemistry ; Biological activity ; Bioremediation ; Chemical properties ; Chemical reduction ; Chromium ; Comparative analysis ; Contaminants ; Control ; Electrodes ; Electron transfer ; Electrons ; Environmental aspects ; Groundwater ; Groundwater treatment ; Hexavalent chromium ; Hydrocarbons ; Industrial areas ; Microbial activity ; Microorganisms ; Nutrients ; Oxidation ; Oxidation-reduction potential ; Pollution monitoring ; Redox reactions ; Remediation ; Sustainability ; System effectiveness ; Wastewater pollution ; Wastewater treatment ; Water resources ; Water treatment</subject><ispartof>Water (Basel), 2019-11, Vol.11 (11), p.2336</ispartof><rights>COPYRIGHT 2019 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</citedby><cites>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</cites><orcidid>0000-0002-7023-9004 ; 0000-0003-2757-8729 ; 0000-0002-9358-6586 ; 0000-0002-2313-295X ; 0000-0003-1279-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550464098/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550464098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Beretta, Gabriele</creatorcontrib><creatorcontrib>Daghio, Matteo</creatorcontrib><creatorcontrib>Espinoza Tofalos, Anna</creatorcontrib><creatorcontrib>Franzetti, Andrea</creatorcontrib><creatorcontrib>Mastorgio, Andrea Filippo</creatorcontrib><creatorcontrib>Saponaro, Sabrina</creatorcontrib><creatorcontrib>Sezenna, Elena</creatorcontrib><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><title>Water (Basel)</title><description>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</description><subject>Aquifers</subject><subject>Bioelectrochemistry</subject><subject>Biological activity</subject><subject>Bioremediation</subject><subject>Chemical properties</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Comparative analysis</subject><subject>Contaminants</subject><subject>Control</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Environmental aspects</subject><subject>Groundwater</subject><subject>Groundwater treatment</subject><subject>Hexavalent chromium</subject><subject>Hydrocarbons</subject><subject>Industrial areas</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Oxidation-reduction potential</subject><subject>Pollution monitoring</subject><subject>Redox reactions</subject><subject>Remediation</subject><subject>Sustainability</subject><subject>System effectiveness</subject><subject>Wastewater pollution</subject><subject>Wastewater treatment</subject><subject>Water resources</subject><subject>Water treatment</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEQDaJgqT34DxY8eVjN126SYy3WCgVF6nnJZidtyu6mJlur_96UijhzmGF4b-bNQ-ia4DvGFL4_kBSUsfIMjSgWLOeck_N__SWaxLjFKbiSssAjNH8Nfh0gxmzlDzo0MXtwHlowQ_BmA50zus3eoIPG6cH5PvM2W8CX_tQt9EM22wTfuX13hS6sbiNMfusYvc8fV7NFvnx5ep5Nl7lhjAw5J0oTrFUpaa1KJRgVAprSgq4LqbWRVinDma2tLRpKNYdalLQBKgorTUPYGN2c9u6C_9hDHKqt34c-naxoUWBecqxkQt2dUOuksnK99UPQJmVzfMj3YF2aTyXBBU4iRCLcnggm-BgD2GoXXKfDd0VwdbS2-rOW_QB8v2rL</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Beretta, Gabriele</creator><creator>Daghio, Matteo</creator><creator>Espinoza Tofalos, Anna</creator><creator>Franzetti, Andrea</creator><creator>Mastorgio, Andrea Filippo</creator><creator>Saponaro, Sabrina</creator><creator>Sezenna, Elena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7023-9004</orcidid><orcidid>https://orcid.org/0000-0003-2757-8729</orcidid><orcidid>https://orcid.org/0000-0002-9358-6586</orcidid><orcidid>https://orcid.org/0000-0002-2313-295X</orcidid><orcidid>https://orcid.org/0000-0003-1279-9940</orcidid></search><sort><creationdate>20191101</creationdate><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><author>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquifers</topic><topic>Bioelectrochemistry</topic><topic>Biological activity</topic><topic>Bioremediation</topic><topic>Chemical properties</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Comparative analysis</topic><topic>Contaminants</topic><topic>Control</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Environmental aspects</topic><topic>Groundwater</topic><topic>Groundwater treatment</topic><topic>Hexavalent chromium</topic><topic>Hydrocarbons</topic><topic>Industrial areas</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Oxidation-reduction potential</topic><topic>Pollution monitoring</topic><topic>Redox reactions</topic><topic>Remediation</topic><topic>Sustainability</topic><topic>System effectiveness</topic><topic>Wastewater pollution</topic><topic>Wastewater treatment</topic><topic>Water resources</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beretta, Gabriele</creatorcontrib><creatorcontrib>Daghio, Matteo</creatorcontrib><creatorcontrib>Espinoza Tofalos, Anna</creatorcontrib><creatorcontrib>Franzetti, Andrea</creatorcontrib><creatorcontrib>Mastorgio, Andrea Filippo</creatorcontrib><creatorcontrib>Saponaro, Sabrina</creatorcontrib><creatorcontrib>Sezenna, Elena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beretta, Gabriele</au><au>Daghio, Matteo</au><au>Espinoza Tofalos, Anna</au><au>Franzetti, Andrea</au><au>Mastorgio, Andrea Filippo</au><au>Saponaro, Sabrina</au><au>Sezenna, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</atitle><jtitle>Water (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>2336</spage><pages>2336-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w11112336</doi><orcidid>https://orcid.org/0000-0002-7023-9004</orcidid><orcidid>https://orcid.org/0000-0003-2757-8729</orcidid><orcidid>https://orcid.org/0000-0002-9358-6586</orcidid><orcidid>https://orcid.org/0000-0002-2313-295X</orcidid><orcidid>https://orcid.org/0000-0003-1279-9940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2019-11, Vol.11 (11), p.2336
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2550464098
source Publicly Available Content Database
subjects Aquifers
Bioelectrochemistry
Biological activity
Bioremediation
Chemical properties
Chemical reduction
Chromium
Comparative analysis
Contaminants
Control
Electrodes
Electron transfer
Electrons
Environmental aspects
Groundwater
Groundwater treatment
Hexavalent chromium
Hydrocarbons
Industrial areas
Microbial activity
Microorganisms
Nutrients
Oxidation
Oxidation-reduction potential
Pollution monitoring
Redox reactions
Remediation
Sustainability
System effectiveness
Wastewater pollution
Wastewater treatment
Water resources
Water treatment
title Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20Towards%20Bioelectrochemical%20Remediation%20of%20Hexavalent%20Chromium&rft.jtitle=Water%20(Basel)&rft.au=Beretta,%20Gabriele&rft.date=2019-11-01&rft.volume=11&rft.issue=11&rft.spage=2336&rft.pages=2336-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w11112336&rft_dat=%3Cgale_proqu%3EA810509737%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550464098&rft_id=info:pmid/&rft_galeid=A810509737&rfr_iscdi=true