Loading…
Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium
Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment b...
Saved in:
Published in: | Water (Basel) 2019-11, Vol.11 (11), p.2336 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13 |
container_end_page | |
container_issue | 11 |
container_start_page | 2336 |
container_title | Water (Basel) |
container_volume | 11 |
creator | Beretta, Gabriele Daghio, Matteo Espinoza Tofalos, Anna Franzetti, Andrea Mastorgio, Andrea Filippo Saponaro, Sabrina Sezenna, Elena |
description | Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues. |
doi_str_mv | 10.3390/w11112336 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2550464098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810509737</galeid><sourcerecordid>A810509737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT34DxY8eVjN126SYy3WCgVF6nnJZidtyu6mJlur_96UijhzmGF4b-bNQ-ia4DvGFL4_kBSUsfIMjSgWLOeck_N__SWaxLjFKbiSssAjNH8Nfh0gxmzlDzo0MXtwHlowQ_BmA50zus3eoIPG6cH5PvM2W8CX_tQt9EM22wTfuX13hS6sbiNMfusYvc8fV7NFvnx5ep5Nl7lhjAw5J0oTrFUpaa1KJRgVAprSgq4LqbWRVinDma2tLRpKNYdalLQBKgorTUPYGN2c9u6C_9hDHKqt34c-naxoUWBecqxkQt2dUOuksnK99UPQJmVzfMj3YF2aTyXBBU4iRCLcnggm-BgD2GoXXKfDd0VwdbS2-rOW_QB8v2rL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550464098</pqid></control><display><type>article</type><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><source>Publicly Available Content Database</source><creator>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</creator><creatorcontrib>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</creatorcontrib><description>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w11112336</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquifers ; Bioelectrochemistry ; Biological activity ; Bioremediation ; Chemical properties ; Chemical reduction ; Chromium ; Comparative analysis ; Contaminants ; Control ; Electrodes ; Electron transfer ; Electrons ; Environmental aspects ; Groundwater ; Groundwater treatment ; Hexavalent chromium ; Hydrocarbons ; Industrial areas ; Microbial activity ; Microorganisms ; Nutrients ; Oxidation ; Oxidation-reduction potential ; Pollution monitoring ; Redox reactions ; Remediation ; Sustainability ; System effectiveness ; Wastewater pollution ; Wastewater treatment ; Water resources ; Water treatment</subject><ispartof>Water (Basel), 2019-11, Vol.11 (11), p.2336</ispartof><rights>COPYRIGHT 2019 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</citedby><cites>FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</cites><orcidid>0000-0002-7023-9004 ; 0000-0003-2757-8729 ; 0000-0002-9358-6586 ; 0000-0002-2313-295X ; 0000-0003-1279-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550464098/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550464098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Beretta, Gabriele</creatorcontrib><creatorcontrib>Daghio, Matteo</creatorcontrib><creatorcontrib>Espinoza Tofalos, Anna</creatorcontrib><creatorcontrib>Franzetti, Andrea</creatorcontrib><creatorcontrib>Mastorgio, Andrea Filippo</creatorcontrib><creatorcontrib>Saponaro, Sabrina</creatorcontrib><creatorcontrib>Sezenna, Elena</creatorcontrib><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><title>Water (Basel)</title><description>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</description><subject>Aquifers</subject><subject>Bioelectrochemistry</subject><subject>Biological activity</subject><subject>Bioremediation</subject><subject>Chemical properties</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Comparative analysis</subject><subject>Contaminants</subject><subject>Control</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Environmental aspects</subject><subject>Groundwater</subject><subject>Groundwater treatment</subject><subject>Hexavalent chromium</subject><subject>Hydrocarbons</subject><subject>Industrial areas</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Oxidation-reduction potential</subject><subject>Pollution monitoring</subject><subject>Redox reactions</subject><subject>Remediation</subject><subject>Sustainability</subject><subject>System effectiveness</subject><subject>Wastewater pollution</subject><subject>Wastewater treatment</subject><subject>Water resources</subject><subject>Water treatment</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEQDaJgqT34DxY8eVjN126SYy3WCgVF6nnJZidtyu6mJlur_96UijhzmGF4b-bNQ-ia4DvGFL4_kBSUsfIMjSgWLOeck_N__SWaxLjFKbiSssAjNH8Nfh0gxmzlDzo0MXtwHlowQ_BmA50zus3eoIPG6cH5PvM2W8CX_tQt9EM22wTfuX13hS6sbiNMfusYvc8fV7NFvnx5ep5Nl7lhjAw5J0oTrFUpaa1KJRgVAprSgq4LqbWRVinDma2tLRpKNYdalLQBKgorTUPYGN2c9u6C_9hDHKqt34c-naxoUWBecqxkQt2dUOuksnK99UPQJmVzfMj3YF2aTyXBBU4iRCLcnggm-BgD2GoXXKfDd0VwdbS2-rOW_QB8v2rL</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Beretta, Gabriele</creator><creator>Daghio, Matteo</creator><creator>Espinoza Tofalos, Anna</creator><creator>Franzetti, Andrea</creator><creator>Mastorgio, Andrea Filippo</creator><creator>Saponaro, Sabrina</creator><creator>Sezenna, Elena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7023-9004</orcidid><orcidid>https://orcid.org/0000-0003-2757-8729</orcidid><orcidid>https://orcid.org/0000-0002-9358-6586</orcidid><orcidid>https://orcid.org/0000-0002-2313-295X</orcidid><orcidid>https://orcid.org/0000-0003-1279-9940</orcidid></search><sort><creationdate>20191101</creationdate><title>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</title><author>Beretta, Gabriele ; Daghio, Matteo ; Espinoza Tofalos, Anna ; Franzetti, Andrea ; Mastorgio, Andrea Filippo ; Saponaro, Sabrina ; Sezenna, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquifers</topic><topic>Bioelectrochemistry</topic><topic>Biological activity</topic><topic>Bioremediation</topic><topic>Chemical properties</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Comparative analysis</topic><topic>Contaminants</topic><topic>Control</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Environmental aspects</topic><topic>Groundwater</topic><topic>Groundwater treatment</topic><topic>Hexavalent chromium</topic><topic>Hydrocarbons</topic><topic>Industrial areas</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Oxidation-reduction potential</topic><topic>Pollution monitoring</topic><topic>Redox reactions</topic><topic>Remediation</topic><topic>Sustainability</topic><topic>System effectiveness</topic><topic>Wastewater pollution</topic><topic>Wastewater treatment</topic><topic>Water resources</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beretta, Gabriele</creatorcontrib><creatorcontrib>Daghio, Matteo</creatorcontrib><creatorcontrib>Espinoza Tofalos, Anna</creatorcontrib><creatorcontrib>Franzetti, Andrea</creatorcontrib><creatorcontrib>Mastorgio, Andrea Filippo</creatorcontrib><creatorcontrib>Saponaro, Sabrina</creatorcontrib><creatorcontrib>Sezenna, Elena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beretta, Gabriele</au><au>Daghio, Matteo</au><au>Espinoza Tofalos, Anna</au><au>Franzetti, Andrea</au><au>Mastorgio, Andrea Filippo</au><au>Saponaro, Sabrina</au><au>Sezenna, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium</atitle><jtitle>Water (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>2336</spage><pages>2336-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w11112336</doi><orcidid>https://orcid.org/0000-0002-7023-9004</orcidid><orcidid>https://orcid.org/0000-0003-2757-8729</orcidid><orcidid>https://orcid.org/0000-0002-9358-6586</orcidid><orcidid>https://orcid.org/0000-0002-2313-295X</orcidid><orcidid>https://orcid.org/0000-0003-1279-9940</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2019-11, Vol.11 (11), p.2336 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2550464098 |
source | Publicly Available Content Database |
subjects | Aquifers Bioelectrochemistry Biological activity Bioremediation Chemical properties Chemical reduction Chromium Comparative analysis Contaminants Control Electrodes Electron transfer Electrons Environmental aspects Groundwater Groundwater treatment Hexavalent chromium Hydrocarbons Industrial areas Microbial activity Microorganisms Nutrients Oxidation Oxidation-reduction potential Pollution monitoring Redox reactions Remediation Sustainability System effectiveness Wastewater pollution Wastewater treatment Water resources Water treatment |
title | Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20Towards%20Bioelectrochemical%20Remediation%20of%20Hexavalent%20Chromium&rft.jtitle=Water%20(Basel)&rft.au=Beretta,%20Gabriele&rft.date=2019-11-01&rft.volume=11&rft.issue=11&rft.spage=2336&rft.pages=2336-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w11112336&rft_dat=%3Cgale_proqu%3EA810509737%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-419a10a9682b96973277ed6feab58aac8f99c43fbff5d22a4eb762de275f8cd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550464098&rft_id=info:pmid/&rft_galeid=A810509737&rfr_iscdi=true |