Loading…

Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements

The highly dynamic nature of snow requires frequent observations to study its various properties. Keeping this in mind, the present investigation presents results from the analysis of fully polarimetric synthetic aperture radar (POLSAR) parameters for the development of a snow depth (SD) inversion m...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2020-01, Vol.12 (1), p.21
Main Authors: Singh, Gulab, Lavrentiev, Ivan I., Glazovsky, Andrey F., Patil, Akshay, Mohanty, Shradha, Khromova, Tatiana E., Nosenko, Gennady, Sosnovskiy, Aleksandr, Arigony-Neto, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83
cites cdi_FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83
container_end_page
container_issue 1
container_start_page 21
container_title Water (Basel)
container_volume 12
creator Singh, Gulab
Lavrentiev, Ivan I.
Glazovsky, Andrey F.
Patil, Akshay
Mohanty, Shradha
Khromova, Tatiana E.
Nosenko, Gennady
Sosnovskiy, Aleksandr
Arigony-Neto, Jorge
description The highly dynamic nature of snow requires frequent observations to study its various properties. Keeping this in mind, the present investigation presents results from the analysis of fully polarimetric synthetic aperture radar (POLSAR) parameters for the development of a snow depth (SD) inversion model for SD retrieval. Snow depth retrieved using ground penetrating radar (GPR) at 500 MHz over Austre Grønfjordbreen in the Svalbard region was used to understand the behaviour of certain polarimetric parameters. A significant correlation was found between field-measured SD and POLSAR parameters, namely coherence and normalized volume scattering power (R2 = 0.84 and R2 = 0.73, respectively.) Using the POLSAR scattering powers obtained from the six-component model-based decomposition (6SD), the heterogeneity and anisotropic behaviour in the firn areas are also explained. Further, based on the analyses shown in this work, a polarimetric parameter-based SD inversion algorithm have been proposed and validated. The univariate model with co-polarization coherence has the highest correlation (R2 = 0.84, Root Mean Square Error (RMSE) = 0.18). We have even tested several multivariate models for the same, to conclude that a combination of coherence, normalized volume and double-bounce scattering have a high correlation with SD (R2 = 0.84, RMSE = 0.18). Additionally, temporal and spatial variability in SD was also observed from three polarimetric SAR images acquired between 4 April 2015 and 15 May 2015 over the Western Nordenskiöld Land region. Increase in snow depth corresponding to snow precipitation events were also detected using the POLSAR data.
doi_str_mv 10.3390/w12010021
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2550492878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810510449</galeid><sourcerecordid>A810510449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83</originalsourceid><addsrcrecordid>eNpNkclOwzAQQCMEEgh64A8sceIQ8JI4ybFiKUhFRV24Ro49BkNiBzsF9Qf4bkyLEDOH2d9IM0lySvAFYxW-_CQUE4wp2UuOKC5YmmUZ2f_nHyajEF5xlKwqyxwfJV9zGLyBD9Eip9GiF4OJrrAKLaHrnY_Bk_BGNKY1wwYZixbWffZCvqFr6IcX5D7Ao0krpAEftvXIaoRXaBWMfUaTx_kWF9ESGuctoMfZdDGeowcQYe2hAzuEk-RAizbA6NceJ6vbm-XVXTqdTe6vxtNUMkaGlIJuKlqosihFUyimc45VIcsCF0W8AOUV4Rq40JRyoKrkMuNcca0qoRRTJTtOznbc3rv3NYShfnVrb-PKmuZ5vAqN6Nh1set6Fi3Uxmo3eCGjKuiMdBa0iflxSXBOcJZVceB8NyC9C8GDrntvOuE3NcH1z2vqv9ewb0lygBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550492878</pqid></control><display><type>article</type><title>Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements</title><source>Publicly Available Content Database</source><creator>Singh, Gulab ; Lavrentiev, Ivan I. ; Glazovsky, Andrey F. ; Patil, Akshay ; Mohanty, Shradha ; Khromova, Tatiana E. ; Nosenko, Gennady ; Sosnovskiy, Aleksandr ; Arigony-Neto, Jorge</creator><creatorcontrib>Singh, Gulab ; Lavrentiev, Ivan I. ; Glazovsky, Andrey F. ; Patil, Akshay ; Mohanty, Shradha ; Khromova, Tatiana E. ; Nosenko, Gennady ; Sosnovskiy, Aleksandr ; Arigony-Neto, Jorge</creatorcontrib><description>The highly dynamic nature of snow requires frequent observations to study its various properties. Keeping this in mind, the present investigation presents results from the analysis of fully polarimetric synthetic aperture radar (POLSAR) parameters for the development of a snow depth (SD) inversion model for SD retrieval. Snow depth retrieved using ground penetrating radar (GPR) at 500 MHz over Austre Grønfjordbreen in the Svalbard region was used to understand the behaviour of certain polarimetric parameters. A significant correlation was found between field-measured SD and POLSAR parameters, namely coherence and normalized volume scattering power (R2 = 0.84 and R2 = 0.73, respectively.) Using the POLSAR scattering powers obtained from the six-component model-based decomposition (6SD), the heterogeneity and anisotropic behaviour in the firn areas are also explained. Further, based on the analyses shown in this work, a polarimetric parameter-based SD inversion algorithm have been proposed and validated. The univariate model with co-polarization coherence has the highest correlation (R2 = 0.84, Root Mean Square Error (RMSE) = 0.18). We have even tested several multivariate models for the same, to conclude that a combination of coherence, normalized volume and double-bounce scattering have a high correlation with SD (R2 = 0.84, RMSE = 0.18). Additionally, temporal and spatial variability in SD was also observed from three polarimetric SAR images acquired between 4 April 2015 and 15 May 2015 over the Western Nordenskiöld Land region. Increase in snow depth corresponding to snow precipitation events were also detected using the POLSAR data.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12010021</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Coherent scattering ; Decomposition ; Distribution ; Environmental aspects ; Firn ; Forecasts and trends ; Glaciers ; Ground penetrating radar ; Heterogeneity ; Image acquisition ; Inversion ; Measurement ; Radar ; Radar polarimetry ; Root-mean-square errors ; Satellites ; Snow ; Snow depth ; Snowpack ; Synthetic aperture radar ; Testing</subject><ispartof>Water (Basel), 2020-01, Vol.12 (1), p.21</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83</citedby><cites>FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83</cites><orcidid>0000-0001-6275-7517 ; 0000-0002-7774-5997 ; 0000-0001-5445-2107 ; 0000-0003-4848-2064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550492878/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550492878?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Singh, Gulab</creatorcontrib><creatorcontrib>Lavrentiev, Ivan I.</creatorcontrib><creatorcontrib>Glazovsky, Andrey F.</creatorcontrib><creatorcontrib>Patil, Akshay</creatorcontrib><creatorcontrib>Mohanty, Shradha</creatorcontrib><creatorcontrib>Khromova, Tatiana E.</creatorcontrib><creatorcontrib>Nosenko, Gennady</creatorcontrib><creatorcontrib>Sosnovskiy, Aleksandr</creatorcontrib><creatorcontrib>Arigony-Neto, Jorge</creatorcontrib><title>Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements</title><title>Water (Basel)</title><description>The highly dynamic nature of snow requires frequent observations to study its various properties. Keeping this in mind, the present investigation presents results from the analysis of fully polarimetric synthetic aperture radar (POLSAR) parameters for the development of a snow depth (SD) inversion model for SD retrieval. Snow depth retrieved using ground penetrating radar (GPR) at 500 MHz over Austre Grønfjordbreen in the Svalbard region was used to understand the behaviour of certain polarimetric parameters. A significant correlation was found between field-measured SD and POLSAR parameters, namely coherence and normalized volume scattering power (R2 = 0.84 and R2 = 0.73, respectively.) Using the POLSAR scattering powers obtained from the six-component model-based decomposition (6SD), the heterogeneity and anisotropic behaviour in the firn areas are also explained. Further, based on the analyses shown in this work, a polarimetric parameter-based SD inversion algorithm have been proposed and validated. The univariate model with co-polarization coherence has the highest correlation (R2 = 0.84, Root Mean Square Error (RMSE) = 0.18). We have even tested several multivariate models for the same, to conclude that a combination of coherence, normalized volume and double-bounce scattering have a high correlation with SD (R2 = 0.84, RMSE = 0.18). Additionally, temporal and spatial variability in SD was also observed from three polarimetric SAR images acquired between 4 April 2015 and 15 May 2015 over the Western Nordenskiöld Land region. Increase in snow depth corresponding to snow precipitation events were also detected using the POLSAR data.</description><subject>Algorithms</subject><subject>Coherent scattering</subject><subject>Decomposition</subject><subject>Distribution</subject><subject>Environmental aspects</subject><subject>Firn</subject><subject>Forecasts and trends</subject><subject>Glaciers</subject><subject>Ground penetrating radar</subject><subject>Heterogeneity</subject><subject>Image acquisition</subject><subject>Inversion</subject><subject>Measurement</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>Root-mean-square errors</subject><subject>Satellites</subject><subject>Snow</subject><subject>Snow depth</subject><subject>Snowpack</subject><subject>Synthetic aperture radar</subject><subject>Testing</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkclOwzAQQCMEEgh64A8sceIQ8JI4ybFiKUhFRV24Ro49BkNiBzsF9Qf4bkyLEDOH2d9IM0lySvAFYxW-_CQUE4wp2UuOKC5YmmUZ2f_nHyajEF5xlKwqyxwfJV9zGLyBD9Eip9GiF4OJrrAKLaHrnY_Bk_BGNKY1wwYZixbWffZCvqFr6IcX5D7Ao0krpAEftvXIaoRXaBWMfUaTx_kWF9ESGuctoMfZdDGeowcQYe2hAzuEk-RAizbA6NceJ6vbm-XVXTqdTe6vxtNUMkaGlIJuKlqosihFUyimc45VIcsCF0W8AOUV4Rq40JRyoKrkMuNcca0qoRRTJTtOznbc3rv3NYShfnVrb-PKmuZ5vAqN6Nh1set6Fi3Uxmo3eCGjKuiMdBa0iflxSXBOcJZVceB8NyC9C8GDrntvOuE3NcH1z2vqv9ewb0lygBo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Singh, Gulab</creator><creator>Lavrentiev, Ivan I.</creator><creator>Glazovsky, Andrey F.</creator><creator>Patil, Akshay</creator><creator>Mohanty, Shradha</creator><creator>Khromova, Tatiana E.</creator><creator>Nosenko, Gennady</creator><creator>Sosnovskiy, Aleksandr</creator><creator>Arigony-Neto, Jorge</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6275-7517</orcidid><orcidid>https://orcid.org/0000-0002-7774-5997</orcidid><orcidid>https://orcid.org/0000-0001-5445-2107</orcidid><orcidid>https://orcid.org/0000-0003-4848-2064</orcidid></search><sort><creationdate>20200101</creationdate><title>Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements</title><author>Singh, Gulab ; Lavrentiev, Ivan I. ; Glazovsky, Andrey F. ; Patil, Akshay ; Mohanty, Shradha ; Khromova, Tatiana E. ; Nosenko, Gennady ; Sosnovskiy, Aleksandr ; Arigony-Neto, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Coherent scattering</topic><topic>Decomposition</topic><topic>Distribution</topic><topic>Environmental aspects</topic><topic>Firn</topic><topic>Forecasts and trends</topic><topic>Glaciers</topic><topic>Ground penetrating radar</topic><topic>Heterogeneity</topic><topic>Image acquisition</topic><topic>Inversion</topic><topic>Measurement</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>Root-mean-square errors</topic><topic>Satellites</topic><topic>Snow</topic><topic>Snow depth</topic><topic>Snowpack</topic><topic>Synthetic aperture radar</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Gulab</creatorcontrib><creatorcontrib>Lavrentiev, Ivan I.</creatorcontrib><creatorcontrib>Glazovsky, Andrey F.</creatorcontrib><creatorcontrib>Patil, Akshay</creatorcontrib><creatorcontrib>Mohanty, Shradha</creatorcontrib><creatorcontrib>Khromova, Tatiana E.</creatorcontrib><creatorcontrib>Nosenko, Gennady</creatorcontrib><creatorcontrib>Sosnovskiy, Aleksandr</creatorcontrib><creatorcontrib>Arigony-Neto, Jorge</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Gulab</au><au>Lavrentiev, Ivan I.</au><au>Glazovsky, Andrey F.</au><au>Patil, Akshay</au><au>Mohanty, Shradha</au><au>Khromova, Tatiana E.</au><au>Nosenko, Gennady</au><au>Sosnovskiy, Aleksandr</au><au>Arigony-Neto, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements</atitle><jtitle>Water (Basel)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>21</spage><pages>21-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The highly dynamic nature of snow requires frequent observations to study its various properties. Keeping this in mind, the present investigation presents results from the analysis of fully polarimetric synthetic aperture radar (POLSAR) parameters for the development of a snow depth (SD) inversion model for SD retrieval. Snow depth retrieved using ground penetrating radar (GPR) at 500 MHz over Austre Grønfjordbreen in the Svalbard region was used to understand the behaviour of certain polarimetric parameters. A significant correlation was found between field-measured SD and POLSAR parameters, namely coherence and normalized volume scattering power (R2 = 0.84 and R2 = 0.73, respectively.) Using the POLSAR scattering powers obtained from the six-component model-based decomposition (6SD), the heterogeneity and anisotropic behaviour in the firn areas are also explained. Further, based on the analyses shown in this work, a polarimetric parameter-based SD inversion algorithm have been proposed and validated. The univariate model with co-polarization coherence has the highest correlation (R2 = 0.84, Root Mean Square Error (RMSE) = 0.18). We have even tested several multivariate models for the same, to conclude that a combination of coherence, normalized volume and double-bounce scattering have a high correlation with SD (R2 = 0.84, RMSE = 0.18). Additionally, temporal and spatial variability in SD was also observed from three polarimetric SAR images acquired between 4 April 2015 and 15 May 2015 over the Western Nordenskiöld Land region. Increase in snow depth corresponding to snow precipitation events were also detected using the POLSAR data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12010021</doi><orcidid>https://orcid.org/0000-0001-6275-7517</orcidid><orcidid>https://orcid.org/0000-0002-7774-5997</orcidid><orcidid>https://orcid.org/0000-0001-5445-2107</orcidid><orcidid>https://orcid.org/0000-0003-4848-2064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2020-01, Vol.12 (1), p.21
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2550492878
source Publicly Available Content Database
subjects Algorithms
Coherent scattering
Decomposition
Distribution
Environmental aspects
Firn
Forecasts and trends
Glaciers
Ground penetrating radar
Heterogeneity
Image acquisition
Inversion
Measurement
Radar
Radar polarimetry
Root-mean-square errors
Satellites
Snow
Snow depth
Snowpack
Synthetic aperture radar
Testing
title Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20Spatial%20and%20Temporal%20Variability%20in%20Snowpack%20Depth%20over%20Glaciers%20in%20Svalbard%20Using%20GPR%20and%20Spaceborne%20POLSAR%20Measurements&rft.jtitle=Water%20(Basel)&rft.au=Singh,%20Gulab&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=21&rft.pages=21-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12010021&rft_dat=%3Cgale_proqu%3EA810510449%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-2efb927d878ab7d3f560d7c8707733926916fe6af226e2d86c466d6fd9add3d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550492878&rft_id=info:pmid/&rft_galeid=A810510449&rfr_iscdi=true