Loading…

Hydrodynamic Structure with Scour Hole Downstream of Bed Sills

Experimental turbulence measurements of scour hole downstream of bed sills in alluvial channels with non-cohesive sediments are investigated. Using an Acoustic Doppler Velocimeter (ADV), the flow velocity-field within the equilibrium scour hole was comprehensively measured. In this study, we especia...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2020-01, Vol.12 (1), p.186
Main Authors: Ben Meftah, Mouldi, De Serio, Francesca, De Padova, Diana, Mossa, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental turbulence measurements of scour hole downstream of bed sills in alluvial channels with non-cohesive sediments are investigated. Using an Acoustic Doppler Velocimeter (ADV), the flow velocity-field within the equilibrium scour hole was comprehensively measured. In this study, we especially focus on the flow hydrodynamic structure in the scour hole at equilibrium. In addition to the flow velocity distribution in the equilibrium scour hole, the turbulence intensities, the Reynolds shear stresses, the turbulent kinetic energy, and the turbulent length scales are analyzed. Since the prediction of equilibrium scour features is always very uncertain, in this study and based on laboratory turbulence measurements, we apply the phenomenological theory of turbulence to predict the maximum equilibrium scour depth. With this approach, we obtain a new scaling of the maximum scour depth at equilibrium, which is validated using experimental data, satisfying the validity of a spectral exponent equal to −5/3. The proposed scaling shows a quite reasonable accuracy in predicting the equilibrium scour depth in different hydraulic structures.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12010186