Loading…

Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective

Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock-space localization, the multifractal dimension Dq is employed; it has been claimed that Dq shows a jump from the delocalized value Dq = 1 in the eigenstate thermalization hypothesis (ETH) phase to a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2021-06, Vol.103 (21), Article 214206
Main Authors: Orito, Takahiro, Imura, Ken-Ichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3
cites cdi_FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3
container_end_page
container_issue 21
container_start_page
container_title Physical review. B
container_volume 103
creator Orito, Takahiro
Imura, Ken-Ichiro
description Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock-space localization, the multifractal dimension Dq is employed; it has been claimed that Dq shows a jump from the delocalized value Dq = 1 in the eigenstate thermalization hypothesis (ETH) phase to a smaller value 0 < Dq < 1 at the ETH-MBL transition, yet exhibiting a conspicuous discrepancy from the fully localized value Dq = 0, which indicates that multifractality remains inside the MBL phase. Here, to better quantify the situation, we employ, instead of the commonly used computational basis, the one-particle density matrix (OPDM) and use its eigenstates (natural orbitals) as a Fock state basis for representing many-body eigenstates | ψ ⟩ of the system. Using this basis, we compute Dq and other indices quantifying the Fock-space localization, such as the local purity S, which is derived from the occupation spectrum {nα} (eigenvalues of the OPDM). We highlight the statistical distribution of Hamming distance xμν occurring in the pairwise coefficients ∣ ∣ aμ∣∣2|aν|2 in S, and compare this with a related quantity considered in the literature.
doi_str_mv 10.1103/PhysRevB.103.214206
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550542768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550542768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8BnzvTJE0b33Q4FSYT0edymz-Y2bU1SYf109sx59O9597DOfBD6DIl8zQl7PrlYwivZnc3H8WcppwScYImlAuZSCnk6f-ekXM0C2FDCEkFkTmRE-Sf-zo660FFqF0cMDQaL1v1mYQOlMF1q8b7D0TXNtg1eAvNkFStHo4fo3GIEE24wevGJB346FRtsDZN2OdtIXr3jTvjQ2dUdDtzgc4s1MHM_uYUvS_v3xaPyWr98LS4XSWKcRYTDdZWSskCikIJC1xqaipBMkKokEanXOeVrZgoBMtyKayqKGEV5VRxYDmwKbo65Ha-_epNiOWm7X0zVpY0y0jGaS6K0cUOLuXbELyxZefdFvxQpqTc8y2PfMu9OPBlv79dcoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550542768</pqid></control><display><type>article</type><title>Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Orito, Takahiro ; Imura, Ken-Ichiro</creator><creatorcontrib>Orito, Takahiro ; Imura, Ken-Ichiro</creatorcontrib><description>Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock-space localization, the multifractal dimension Dq is employed; it has been claimed that Dq shows a jump from the delocalized value Dq = 1 in the eigenstate thermalization hypothesis (ETH) phase to a smaller value 0 &lt; Dq &lt; 1 at the ETH-MBL transition, yet exhibiting a conspicuous discrepancy from the fully localized value Dq = 0, which indicates that multifractality remains inside the MBL phase. Here, to better quantify the situation, we employ, instead of the commonly used computational basis, the one-particle density matrix (OPDM) and use its eigenstates (natural orbitals) as a Fock state basis for representing many-body eigenstates | ψ ⟩ of the system. Using this basis, we compute Dq and other indices quantifying the Fock-space localization, such as the local purity S, which is derived from the occupation spectrum {nα} (eigenvalues of the OPDM). We highlight the statistical distribution of Hamming distance xμν occurring in the pairwise coefficients ∣ ∣ aμ∣∣2|aν|2 in S, and compare this with a related quantity considered in the literature.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.214206</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Eigenvalues ; Eigenvectors ; Fractal geometry ; Localization ; Many body interactions ; Multiplexing ; Particle density (concentration) ; Thermalization (energy absorption)</subject><ispartof>Physical review. B, 2021-06, Vol.103 (21), Article 214206</ispartof><rights>Copyright American Physical Society Jun 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3</citedby><cites>FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3</cites><orcidid>0000-0003-3578-9032 ; 0000-0002-8834-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Orito, Takahiro</creatorcontrib><creatorcontrib>Imura, Ken-Ichiro</creatorcontrib><title>Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective</title><title>Physical review. B</title><description>Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock-space localization, the multifractal dimension Dq is employed; it has been claimed that Dq shows a jump from the delocalized value Dq = 1 in the eigenstate thermalization hypothesis (ETH) phase to a smaller value 0 &lt; Dq &lt; 1 at the ETH-MBL transition, yet exhibiting a conspicuous discrepancy from the fully localized value Dq = 0, which indicates that multifractality remains inside the MBL phase. Here, to better quantify the situation, we employ, instead of the commonly used computational basis, the one-particle density matrix (OPDM) and use its eigenstates (natural orbitals) as a Fock state basis for representing many-body eigenstates | ψ ⟩ of the system. Using this basis, we compute Dq and other indices quantifying the Fock-space localization, such as the local purity S, which is derived from the occupation spectrum {nα} (eigenvalues of the OPDM). We highlight the statistical distribution of Hamming distance xμν occurring in the pairwise coefficients ∣ ∣ aμ∣∣2|aν|2 in S, and compare this with a related quantity considered in the literature.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fractal geometry</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Multiplexing</subject><subject>Particle density (concentration)</subject><subject>Thermalization (energy absorption)</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8BnzvTJE0b33Q4FSYT0edymz-Y2bU1SYf109sx59O9597DOfBD6DIl8zQl7PrlYwivZnc3H8WcppwScYImlAuZSCnk6f-ekXM0C2FDCEkFkTmRE-Sf-zo660FFqF0cMDQaL1v1mYQOlMF1q8b7D0TXNtg1eAvNkFStHo4fo3GIEE24wevGJB346FRtsDZN2OdtIXr3jTvjQ2dUdDtzgc4s1MHM_uYUvS_v3xaPyWr98LS4XSWKcRYTDdZWSskCikIJC1xqaipBMkKokEanXOeVrZgoBMtyKayqKGEV5VRxYDmwKbo65Ha-_epNiOWm7X0zVpY0y0jGaS6K0cUOLuXbELyxZefdFvxQpqTc8y2PfMu9OPBlv79dcoQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Orito, Takahiro</creator><creator>Imura, Ken-Ichiro</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3578-9032</orcidid><orcidid>https://orcid.org/0000-0002-8834-0493</orcidid></search><sort><creationdate>20210601</creationdate><title>Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective</title><author>Orito, Takahiro ; Imura, Ken-Ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fractal geometry</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Multiplexing</topic><topic>Particle density (concentration)</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orito, Takahiro</creatorcontrib><creatorcontrib>Imura, Ken-Ichiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orito, Takahiro</au><au>Imura, Ken-Ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective</atitle><jtitle>Physical review. B</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>103</volume><issue>21</issue><artnum>214206</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock-space localization, the multifractal dimension Dq is employed; it has been claimed that Dq shows a jump from the delocalized value Dq = 1 in the eigenstate thermalization hypothesis (ETH) phase to a smaller value 0 &lt; Dq &lt; 1 at the ETH-MBL transition, yet exhibiting a conspicuous discrepancy from the fully localized value Dq = 0, which indicates that multifractality remains inside the MBL phase. Here, to better quantify the situation, we employ, instead of the commonly used computational basis, the one-particle density matrix (OPDM) and use its eigenstates (natural orbitals) as a Fock state basis for representing many-body eigenstates | ψ ⟩ of the system. Using this basis, we compute Dq and other indices quantifying the Fock-space localization, such as the local purity S, which is derived from the occupation spectrum {nα} (eigenvalues of the OPDM). We highlight the statistical distribution of Hamming distance xμν occurring in the pairwise coefficients ∣ ∣ aμ∣∣2|aν|2 in S, and compare this with a related quantity considered in the literature.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.214206</doi><orcidid>https://orcid.org/0000-0003-3578-9032</orcidid><orcidid>https://orcid.org/0000-0002-8834-0493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-06, Vol.103 (21), Article 214206
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2550542768
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Eigenvalues
Eigenvectors
Fractal geometry
Localization
Many body interactions
Multiplexing
Particle density (concentration)
Thermalization (energy absorption)
title Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifractality%20and%20Fock-space%20localization%20in%20many-body%20localized%20states:%20One-particle%20density%20matrix%20perspective&rft.jtitle=Physical%20review.%20B&rft.au=Orito,%20Takahiro&rft.date=2021-06-01&rft.volume=103&rft.issue=21&rft.artnum=214206&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.214206&rft_dat=%3Cproquest_cross%3E2550542768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-daffbcc98a88c6fa49d2eb60500269ed14d7bfb368635796fcb203b242c4a37a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550542768&rft_id=info:pmid/&rfr_iscdi=true