Loading…
Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5
Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them...
Saved in:
Published in: | Physical review. X 2016-05, Vol.6 (2) |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Physical review. X |
container_volume | 6 |
creator | R. Wu J.-Z. Ma S.-M. Nie L.-X. Zhao Huang, X J.-X. Yin B.-B. Fu Richard, P G.-F. Chen Fang, Z Dai, X H.-M. Weng Qian, T Ding, H Pan, S H |
description | Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states. |
doi_str_mv | 10.1103/PhysRevX.6.021017 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2550553861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550553861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tvkibpHmXUKRQUrSC-jKS97TpKU5N2sH9v5zwvBz4-ziHkjkHMGIiHt_0pvOPxK1YxcAZMX5EFZwoiISC9IasQDjBHAUu0XpA6O7YV9iXS2nlauMF1rmlL09GsapB-jGbEQNueGpobP5OsR9-c6NYMtEfj6bg_Wzj8-YG6_kImX5t51NX02xcob8l1bbqAq_9eks-nrNg8R_nr9mXzmEclF2yMLLdWMpUkDIGpVFrEiqdoa6NAAlQz4FpLUa2VMDpVieGpwLUVVnNZShBLcn_ZHbz7mTCMu4ObfD9f7riUIKVIFRO_g9xWow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550553861</pqid></control><display><type>article</type><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><source>Publicly Available Content Database</source><creator>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</creator><creatorcontrib>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</creatorcontrib><description>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.6.021017</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Crystals ; Density of states ; Electromagnetism ; Electron spin ; Electrons ; Energy dissipation ; Energy gap ; First principles ; High temperature ; Mathematical analysis ; Microscopy ; Monolayers ; Photoelectric emission ; Photoelectron spectroscopy ; Quantum Hall effect ; Resistance ; Scanning tunneling microscopy ; Spectrum analysis ; Spintronics ; Topological insulators</subject><ispartof>Physical review. X, 2016-05, Vol.6 (2)</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550553861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>R. Wu</creatorcontrib><creatorcontrib>J.-Z. Ma</creatorcontrib><creatorcontrib>S.-M. Nie</creatorcontrib><creatorcontrib>L.-X. Zhao</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>J.-X. Yin</creatorcontrib><creatorcontrib>B.-B. Fu</creatorcontrib><creatorcontrib>Richard, P</creatorcontrib><creatorcontrib>G.-F. Chen</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Dai, X</creatorcontrib><creatorcontrib>H.-M. Weng</creatorcontrib><creatorcontrib>Qian, T</creatorcontrib><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Pan, S H</creatorcontrib><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><title>Physical review. X</title><description>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</description><subject>Crystals</subject><subject>Density of states</subject><subject>Electromagnetism</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Energy gap</subject><subject>First principles</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Quantum Hall effect</subject><subject>Resistance</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Spintronics</subject><subject>Topological insulators</subject><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tvkibpHmXUKRQUrSC-jKS97TpKU5N2sH9v5zwvBz4-ziHkjkHMGIiHt_0pvOPxK1YxcAZMX5EFZwoiISC9IasQDjBHAUu0XpA6O7YV9iXS2nlauMF1rmlL09GsapB-jGbEQNueGpobP5OsR9-c6NYMtEfj6bg_Wzj8-YG6_kImX5t51NX02xcob8l1bbqAq_9eks-nrNg8R_nr9mXzmEclF2yMLLdWMpUkDIGpVFrEiqdoa6NAAlQz4FpLUa2VMDpVieGpwLUVVnNZShBLcn_ZHbz7mTCMu4ObfD9f7riUIKVIFRO_g9xWow</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>R. Wu</creator><creator>J.-Z. Ma</creator><creator>S.-M. Nie</creator><creator>L.-X. Zhao</creator><creator>Huang, X</creator><creator>J.-X. Yin</creator><creator>B.-B. Fu</creator><creator>Richard, P</creator><creator>G.-F. Chen</creator><creator>Fang, Z</creator><creator>Dai, X</creator><creator>H.-M. Weng</creator><creator>Qian, T</creator><creator>Ding, H</creator><creator>Pan, S H</creator><general>American Physical Society</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160510</creationdate><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><author>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crystals</topic><topic>Density of states</topic><topic>Electromagnetism</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Energy gap</topic><topic>First principles</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Quantum Hall effect</topic><topic>Resistance</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Spintronics</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R. Wu</creatorcontrib><creatorcontrib>J.-Z. Ma</creatorcontrib><creatorcontrib>S.-M. Nie</creatorcontrib><creatorcontrib>L.-X. Zhao</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>J.-X. Yin</creatorcontrib><creatorcontrib>B.-B. Fu</creatorcontrib><creatorcontrib>Richard, P</creatorcontrib><creatorcontrib>G.-F. Chen</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Dai, X</creatorcontrib><creatorcontrib>H.-M. Weng</creatorcontrib><creatorcontrib>Qian, T</creatorcontrib><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Pan, S H</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R. Wu</au><au>J.-Z. Ma</au><au>S.-M. Nie</au><au>L.-X. Zhao</au><au>Huang, X</au><au>J.-X. Yin</au><au>B.-B. Fu</au><au>Richard, P</au><au>G.-F. Chen</au><au>Fang, Z</au><au>Dai, X</au><au>H.-M. Weng</au><au>Qian, T</au><au>Ding, H</au><au>Pan, S H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</atitle><jtitle>Physical review. X</jtitle><date>2016-05-10</date><risdate>2016</risdate><volume>6</volume><issue>2</issue><eissn>2160-3308</eissn><abstract>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.6.021017</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2160-3308 |
ispartof | Physical review. X, 2016-05, Vol.6 (2) |
issn | 2160-3308 |
language | eng |
recordid | cdi_proquest_journals_2550553861 |
source | Publicly Available Content Database |
subjects | Crystals Density of states Electromagnetism Electron spin Electrons Energy dissipation Energy gap First principles High temperature Mathematical analysis Microscopy Monolayers Photoelectric emission Photoelectron spectroscopy Quantum Hall effect Resistance Scanning tunneling microscopy Spectrum analysis Spintronics Topological insulators |
title | Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Topological%20Edge%20States%20in%20a%20Large%20Energy%20Gap%20near%20the%20Step%20Edges%20on%20the%20Surface%20of%20ZrTe5&rft.jtitle=Physical%20review.%20X&rft.au=R.%20Wu&rft.date=2016-05-10&rft.volume=6&rft.issue=2&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.6.021017&rft_dat=%3Cproquest%3E2550553861%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550553861&rft_id=info:pmid/&rfr_iscdi=true |