Loading…

Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5

Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2016-05, Vol.6 (2)
Main Authors: R. Wu, J.-Z. Ma, S.-M. Nie, L.-X. Zhao, Huang, X, J.-X. Yin, B.-B. Fu, Richard, P, G.-F. Chen, Fang, Z, Dai, X, H.-M. Weng, Qian, T, Ding, H, Pan, S H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503
cites
container_end_page
container_issue 2
container_start_page
container_title Physical review. X
container_volume 6
creator R. Wu
J.-Z. Ma
S.-M. Nie
L.-X. Zhao
Huang, X
J.-X. Yin
B.-B. Fu
Richard, P
G.-F. Chen
Fang, Z
Dai, X
H.-M. Weng
Qian, T
Ding, H
Pan, S H
description Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.
doi_str_mv 10.1103/PhysRevX.6.021017
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2550553861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550553861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tvkibpHmXUKRQUrSC-jKS97TpKU5N2sH9v5zwvBz4-ziHkjkHMGIiHt_0pvOPxK1YxcAZMX5EFZwoiISC9IasQDjBHAUu0XpA6O7YV9iXS2nlauMF1rmlL09GsapB-jGbEQNueGpobP5OsR9-c6NYMtEfj6bg_Wzj8-YG6_kImX5t51NX02xcob8l1bbqAq_9eks-nrNg8R_nr9mXzmEclF2yMLLdWMpUkDIGpVFrEiqdoa6NAAlQz4FpLUa2VMDpVieGpwLUVVnNZShBLcn_ZHbz7mTCMu4ObfD9f7riUIKVIFRO_g9xWow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550553861</pqid></control><display><type>article</type><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><source>Publicly Available Content Database</source><creator>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</creator><creatorcontrib>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</creatorcontrib><description>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.6.021017</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Crystals ; Density of states ; Electromagnetism ; Electron spin ; Electrons ; Energy dissipation ; Energy gap ; First principles ; High temperature ; Mathematical analysis ; Microscopy ; Monolayers ; Photoelectric emission ; Photoelectron spectroscopy ; Quantum Hall effect ; Resistance ; Scanning tunneling microscopy ; Spectrum analysis ; Spintronics ; Topological insulators</subject><ispartof>Physical review. X, 2016-05, Vol.6 (2)</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550553861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>R. Wu</creatorcontrib><creatorcontrib>J.-Z. Ma</creatorcontrib><creatorcontrib>S.-M. Nie</creatorcontrib><creatorcontrib>L.-X. Zhao</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>J.-X. Yin</creatorcontrib><creatorcontrib>B.-B. Fu</creatorcontrib><creatorcontrib>Richard, P</creatorcontrib><creatorcontrib>G.-F. Chen</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Dai, X</creatorcontrib><creatorcontrib>H.-M. Weng</creatorcontrib><creatorcontrib>Qian, T</creatorcontrib><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Pan, S H</creatorcontrib><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><title>Physical review. X</title><description>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</description><subject>Crystals</subject><subject>Density of states</subject><subject>Electromagnetism</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Energy gap</subject><subject>First principles</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Quantum Hall effect</subject><subject>Resistance</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Spintronics</subject><subject>Topological insulators</subject><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tvkibpHmXUKRQUrSC-jKS97TpKU5N2sH9v5zwvBz4-ziHkjkHMGIiHt_0pvOPxK1YxcAZMX5EFZwoiISC9IasQDjBHAUu0XpA6O7YV9iXS2nlauMF1rmlL09GsapB-jGbEQNueGpobP5OsR9-c6NYMtEfj6bg_Wzj8-YG6_kImX5t51NX02xcob8l1bbqAq_9eks-nrNg8R_nr9mXzmEclF2yMLLdWMpUkDIGpVFrEiqdoa6NAAlQz4FpLUa2VMDpVieGpwLUVVnNZShBLcn_ZHbz7mTCMu4ObfD9f7riUIKVIFRO_g9xWow</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>R. Wu</creator><creator>J.-Z. Ma</creator><creator>S.-M. Nie</creator><creator>L.-X. Zhao</creator><creator>Huang, X</creator><creator>J.-X. Yin</creator><creator>B.-B. Fu</creator><creator>Richard, P</creator><creator>G.-F. Chen</creator><creator>Fang, Z</creator><creator>Dai, X</creator><creator>H.-M. Weng</creator><creator>Qian, T</creator><creator>Ding, H</creator><creator>Pan, S H</creator><general>American Physical Society</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160510</creationdate><title>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</title><author>R. Wu ; J.-Z. Ma ; S.-M. Nie ; L.-X. Zhao ; Huang, X ; J.-X. Yin ; B.-B. Fu ; Richard, P ; G.-F. Chen ; Fang, Z ; Dai, X ; H.-M. Weng ; Qian, T ; Ding, H ; Pan, S H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crystals</topic><topic>Density of states</topic><topic>Electromagnetism</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Energy gap</topic><topic>First principles</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Quantum Hall effect</topic><topic>Resistance</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Spintronics</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R. Wu</creatorcontrib><creatorcontrib>J.-Z. Ma</creatorcontrib><creatorcontrib>S.-M. Nie</creatorcontrib><creatorcontrib>L.-X. Zhao</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>J.-X. Yin</creatorcontrib><creatorcontrib>B.-B. Fu</creatorcontrib><creatorcontrib>Richard, P</creatorcontrib><creatorcontrib>G.-F. Chen</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Dai, X</creatorcontrib><creatorcontrib>H.-M. Weng</creatorcontrib><creatorcontrib>Qian, T</creatorcontrib><creatorcontrib>Ding, H</creatorcontrib><creatorcontrib>Pan, S H</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R. Wu</au><au>J.-Z. Ma</au><au>S.-M. Nie</au><au>L.-X. Zhao</au><au>Huang, X</au><au>J.-X. Yin</au><au>B.-B. Fu</au><au>Richard, P</au><au>G.-F. Chen</au><au>Fang, Z</au><au>Dai, X</au><au>H.-M. Weng</au><au>Qian, T</au><au>Ding, H</au><au>Pan, S H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5</atitle><jtitle>Physical review. X</jtitle><date>2016-05-10</date><risdate>2016</risdate><volume>6</volume><issue>2</issue><eissn>2160-3308</eissn><abstract>Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ∼100meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.6.021017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2160-3308
ispartof Physical review. X, 2016-05, Vol.6 (2)
issn 2160-3308
language eng
recordid cdi_proquest_journals_2550553861
source Publicly Available Content Database
subjects Crystals
Density of states
Electromagnetism
Electron spin
Electrons
Energy dissipation
Energy gap
First principles
High temperature
Mathematical analysis
Microscopy
Monolayers
Photoelectric emission
Photoelectron spectroscopy
Quantum Hall effect
Resistance
Scanning tunneling microscopy
Spectrum analysis
Spintronics
Topological insulators
title Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Topological%20Edge%20States%20in%20a%20Large%20Energy%20Gap%20near%20the%20Step%20Edges%20on%20the%20Surface%20of%20ZrTe5&rft.jtitle=Physical%20review.%20X&rft.au=R.%20Wu&rft.date=2016-05-10&rft.volume=6&rft.issue=2&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.6.021017&rft_dat=%3Cproquest%3E2550553861%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-b2bb516441e01685beed28ebfa60500d5be27753d963a7864a283e9b3b725c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550553861&rft_id=info:pmid/&rfr_iscdi=true