Loading…

Rheology effect and enhanced thermal conductivity of diamond/metakaolin geopolymer fabricated by direct ink writing

Purpose Traditional simulation research of geological and similar engineering models, such as landslides or other natural disaster scenarios, usually focuses on the change of stress and the state of the model before and after destruction. However, the transition of the inner change is usually invisi...

Full description

Saved in:
Bibliographic Details
Published in:Rapid prototyping journal 2021-07, Vol.27 (5), p.837-850
Main Authors: Wang, Yushen, Xiong, Wei, Tang, Danna, Hao, Liang, Li, Zheng, Li, Yan, Cheng, Kaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Traditional simulation research of geological and similar engineering models, such as landslides or other natural disaster scenarios, usually focuses on the change of stress and the state of the model before and after destruction. However, the transition of the inner change is usually invisible. To optimize and make models more intelligent, this paper aims to propose a perceptible design to detect the internal temperature change transformed by other energy versions like stress or torsion. Design/methodology/approach In this paper, micron diamond particles were embedded in 3D printed geopolymers as a potential thermal sensor material to detect the inner heat change. The authors use synthetic micron diamond powder to reinforced the anti-corrosion properties and thermal conductivity of geopolymer and apply this novel geopolymer slurry in the direct ink writing (DIW) technique. Findings As a result, the addition of micron diamond powder can greatly influence the rheology of geopolymer slurry and make the geopolymer slurry extrudable and suitable for DIW by reducing the slope of the viscosity of this inorganic colloid. The heat transfer coefficient of the micron diamond (15 Wt.%)/geopolymer was 50% higher than the pure geopolymer, which could be detected by the infrared thermal imager. Besides, the addition of diamond particles also increased the porous rates of geopolymer. Originality/value In conclusion, DIW slurry deposition of micron diamond-embedded geopolymer (MDG) composites could be used to manufacture the multi-functional geological model for thermal imaging and defect detection, which need the characteristic of lightweight, isolation, heat transfer and wave absorption.
ISSN:1355-2546
1758-7670
DOI:10.1108/RPJ-06-2020-0124