Loading…

Earthquake detection and location for Earthquake Early Warning Using Deep Learning

Earthquake Early Warning System (EEWS) is a warning system that provides information about the estimated S wave arrival time, which can cause significant and destructive seismic energy using the information carried by the P wave. Technological advances in analyzing data supported by big data, the in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-06, Vol.1951 (1), p.12056
Main Authors: Anggraini, S., Wijaya, S. K., Daryono
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Earthquake Early Warning System (EEWS) is a warning system that provides information about the estimated S wave arrival time, which can cause significant and destructive seismic energy using the information carried by the P wave. Technological advances in analyzing data supported by big data, the interconnection between networks, and high-performance computing systems in the era of the 4.0 industrial revolution have posed challenges to process and analyze earthquake early warning using modern seismological techniques. Early identification of earthquake events is the key to time efficiency to accelerate the dissemination of information. Here, we implement deep learning for early detection and classification of the earthquake P wave and noise signals using raw historical data from 3 component BMKG single station (2014 -2020) in the subduction zone of West Sumatra. The feature selection of the waveform is only selected for earthquakes distance in the cluster close to the station centroid. Statistically, the results of training and testing show good and convergent performance. This result is a preliminary study of deep learning, which is targeted at the classification of earthquakes p wave and noise signals and its association to estimate early earthquake location using 3 component record channels.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1951/1/012056