Loading…

Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm

In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-07, Vol.1966 (1), p.12024
Main Authors: Sun, Mingquan, Xing, Bangsheng, Yang, Daolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1966/1/012024