Loading…
Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm
In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of o...
Saved in:
Published in: | Journal of physics. Conference series 2021-07, Vol.1966 (1), p.12024 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12024 |
container_title | Journal of physics. Conference series |
container_volume | 1966 |
creator | Sun, Mingquan Xing, Bangsheng Yang, Daolong |
description | In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate. |
doi_str_mv | 10.1088/1742-6596/1966/1/012024 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2550679964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550679964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYJ3Ql2-2qSXY8wvBorbfUjTZM1om5q0F_v3plQmguC5yDkh7_ue8ETRLQQPEDC2gJSgJEvzbAHzLBwLABFA5CyanV7OTzNjl9GV9wcAcCg6i_iH8ko4WcW2jftKxdWxUy6p1OCM742MrY63Q5GUthGmjde1aUwrehPU296JXu2N8nEhvCrHhEfjlK6P8bLeW2f6qrmOLrSovbr57vNo97jerZ6TzdvTy2q5SSSihCRCEsxUmkGomVRYFrgsc4KEQCWUICcFoFLkWqcEhVsqMsAklogxKQGlGs-juym2c_ZzUL7nBzu4NmzkKE1BRvM8I0FFJ5V01vvwU9450wh35BDwESYfMfERGR9hcsgnmMGJJ6ex3U_0_677P1yv76vtbyHvSo2_ADXPhG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550679964</pqid></control><display><type>article</type><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</creator><creatorcontrib>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</creatorcontrib><description>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1966/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Domains ; Heuristic ; Heuristic methods ; Optimization ; Segmentation</subject><ispartof>Journal of physics. Conference series, 2021-07, Vol.1966 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550679964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sun, Mingquan</creatorcontrib><creatorcontrib>Xing, Bangsheng</creatorcontrib><creatorcontrib>Yang, Daolong</creatorcontrib><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</description><subject>Algorithms</subject><subject>Domains</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Optimization</subject><subject>Segmentation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYJ3Ql2-2qSXY8wvBorbfUjTZM1om5q0F_v3plQmguC5yDkh7_ue8ETRLQQPEDC2gJSgJEvzbAHzLBwLABFA5CyanV7OTzNjl9GV9wcAcCg6i_iH8ko4WcW2jftKxdWxUy6p1OCM742MrY63Q5GUthGmjde1aUwrehPU296JXu2N8nEhvCrHhEfjlK6P8bLeW2f6qrmOLrSovbr57vNo97jerZ6TzdvTy2q5SSSihCRCEsxUmkGomVRYFrgsc4KEQCWUICcFoFLkWqcEhVsqMsAklogxKQGlGs-juym2c_ZzUL7nBzu4NmzkKE1BRvM8I0FFJ5V01vvwU9450wh35BDwESYfMfERGR9hcsgnmMGJJ6ex3U_0_677P1yv76vtbyHvSo2_ADXPhG8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sun, Mingquan</creator><creator>Xing, Bangsheng</creator><creator>Yang, Daolong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210701</creationdate><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><author>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Domains</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Optimization</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mingquan</creatorcontrib><creatorcontrib>Xing, Bangsheng</creatorcontrib><creatorcontrib>Yang, Daolong</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mingquan</au><au>Xing, Bangsheng</au><au>Yang, Daolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>1966</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1966/1/012024</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-07, Vol.1966 (1), p.12024 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2550679964 |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Algorithms Domains Heuristic Heuristic methods Optimization Segmentation |
title | Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20hyper-heuristic%20of%20Sub-domain%20Elimination%20Strategies%20based%20on%20Firefly%20Algorithm&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sun,%20Mingquan&rft.date=2021-07-01&rft.volume=1966&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1966/1/012024&rft_dat=%3Cproquest_iop_j%3E2550679964%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550679964&rft_id=info:pmid/&rfr_iscdi=true |