Loading…

Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm

In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-07, Vol.1966 (1), p.12024
Main Authors: Sun, Mingquan, Xing, Bangsheng, Yang, Daolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3
container_end_page
container_issue 1
container_start_page 12024
container_title Journal of physics. Conference series
container_volume 1966
creator Sun, Mingquan
Xing, Bangsheng
Yang, Daolong
description In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.
doi_str_mv 10.1088/1742-6596/1966/1/012024
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2550679964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550679964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYJ3Ql2-2qSXY8wvBorbfUjTZM1om5q0F_v3plQmguC5yDkh7_ue8ETRLQQPEDC2gJSgJEvzbAHzLBwLABFA5CyanV7OTzNjl9GV9wcAcCg6i_iH8ko4WcW2jftKxdWxUy6p1OCM742MrY63Q5GUthGmjde1aUwrehPU296JXu2N8nEhvCrHhEfjlK6P8bLeW2f6qrmOLrSovbr57vNo97jerZ6TzdvTy2q5SSSihCRCEsxUmkGomVRYFrgsc4KEQCWUICcFoFLkWqcEhVsqMsAklogxKQGlGs-juym2c_ZzUL7nBzu4NmzkKE1BRvM8I0FFJ5V01vvwU9450wh35BDwESYfMfERGR9hcsgnmMGJJ6ex3U_0_677P1yv76vtbyHvSo2_ADXPhG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550679964</pqid></control><display><type>article</type><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</creator><creatorcontrib>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</creatorcontrib><description>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1966/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Domains ; Heuristic ; Heuristic methods ; Optimization ; Segmentation</subject><ispartof>Journal of physics. Conference series, 2021-07, Vol.1966 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550679964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sun, Mingquan</creatorcontrib><creatorcontrib>Xing, Bangsheng</creatorcontrib><creatorcontrib>Yang, Daolong</creatorcontrib><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</description><subject>Algorithms</subject><subject>Domains</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Optimization</subject><subject>Segmentation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYJ3Ql2-2qSXY8wvBorbfUjTZM1om5q0F_v3plQmguC5yDkh7_ue8ETRLQQPEDC2gJSgJEvzbAHzLBwLABFA5CyanV7OTzNjl9GV9wcAcCg6i_iH8ko4WcW2jftKxdWxUy6p1OCM742MrY63Q5GUthGmjde1aUwrehPU296JXu2N8nEhvCrHhEfjlK6P8bLeW2f6qrmOLrSovbr57vNo97jerZ6TzdvTy2q5SSSihCRCEsxUmkGomVRYFrgsc4KEQCWUICcFoFLkWqcEhVsqMsAklogxKQGlGs-juym2c_ZzUL7nBzu4NmzkKE1BRvM8I0FFJ5V01vvwU9450wh35BDwESYfMfERGR9hcsgnmMGJJ6ex3U_0_677P1yv76vtbyHvSo2_ADXPhG8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sun, Mingquan</creator><creator>Xing, Bangsheng</creator><creator>Yang, Daolong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210701</creationdate><title>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</title><author>Sun, Mingquan ; Xing, Bangsheng ; Yang, Daolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Domains</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Optimization</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mingquan</creatorcontrib><creatorcontrib>Xing, Bangsheng</creatorcontrib><creatorcontrib>Yang, Daolong</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mingquan</au><au>Xing, Bangsheng</au><au>Yang, Daolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>1966</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this study, a hyper-heuristic named Sub-domain Elimination Strategies based on Firefly Algorithm (SESFA) is proposed. First, a typical hyper-heuristic is usually using the high-level strategy selection or the combination of the low-level heuristics to obtain a new hyper-heuristic, each round of optimization process is carried out in the whole problem domain. However, SESFA evaluates the problem domain through the feedback information of the meta-heuristic at the lower level, eliminating the poor performance areas, and adjusting the underlying heuristic or adjusting the algorithm parameters to improve the overall optimization performance. Second, the problem domain segmentation function in SESFA can reduce the complexity of the objective function within a single sub-domain, which is conducive to improving the optimization efficiency of the underlying heuristic. Further, the problem domain segmentation function in SESFA also makes there is no direct correlation between different sub-domains, so different underlying heuristics can be adopted in different sub-domains, which is beneficial to the realization of parallel computing. Comparing SESFA with Firefly Algorithms with five standard test functions, the results show that SESFA has advantages in precision, stability and success rate.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1966/1/012024</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-07, Vol.1966 (1), p.12024
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2550679964
source Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Algorithms
Domains
Heuristic
Heuristic methods
Optimization
Segmentation
title Research on the hyper-heuristic of Sub-domain Elimination Strategies based on Firefly Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20hyper-heuristic%20of%20Sub-domain%20Elimination%20Strategies%20based%20on%20Firefly%20Algorithm&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sun,%20Mingquan&rft.date=2021-07-01&rft.volume=1966&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1966/1/012024&rft_dat=%3Cproquest_iop_j%3E2550679964%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2744-ac438e5611f8ce3cb3dd942aa2d1c094b07ca9ff5420945a608c3c288cc077f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550679964&rft_id=info:pmid/&rfr_iscdi=true