Loading…

Influence of Mo–Nb–Ti additions and peak annealing temperature on the microstructure and mechanical properties of low alloy steels after ultrafast heating process

The influence of the heating rates from 10 to 1000 °C/s and annealing temperatures on the microstructure and mechanical properties of two 0.2%C, 1.9%Mn, 1.4%Si cold-rolled steels with and without the addition of carbide-forming elements (Mo, Nb, and Ti) have been investigated. Results show that the...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-03, Vol.808, p.140928, Article 140928
Main Authors: Hernandez-Duran, E.I., Corallo, L., Ros-Yanez, T., Castro-Cerda, F.M., Petrov, R.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of the heating rates from 10 to 1000 °C/s and annealing temperatures on the microstructure and mechanical properties of two 0.2%C, 1.9%Mn, 1.4%Si cold-rolled steels with and without the addition of carbide-forming elements (Mo, Nb, and Ti) have been investigated. Results show that the increase of the heating rate above 100 °C/s refines the parent austenitic grains in both alloys. The increment of the heating rate led to carbon heterogeneities in the austenite, which after subsequent cooling promoted the formation of a complex mixture of fine-grained constituents. As expected, at the lower heating rates the presence of Nb and Ti-rich carbides and carbonitrides controls the austenite grain growth during the annealing treatment. The tensile test results reveal that high heating rates do not have a significant influence on the tensile strength of the alloy with carbide-forming elements. On the other hand, both the ultimate tensile strength (UTS) and total elongation of the alloy without carbide-forming elements decrease, due to the formation of bands of ferrite and high carbon martensite. However, samples treated at heating rates above 100 °C/s show a combination of UTS in the range of 1400–1600 MPa, and 12–18% of total elongation. The results suggest that the microstructure heterogeneity obtained after high heating rates, especially the ferrite content, has the major effect on the mechanical behavior of the studied steels.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.140928