Loading…
Solid-state welding and microstructural features of an aluminium alloy subjected to a novel two-billet differential velocity sideways extrusion process
A novel process for fabricating cross-sectional shapes of curved profiles in industrial applications, two-billet differential velocity sideways extrusion (DVSE), is proposed in this study. The feasibility of the process is demonstrated by fabricating solid bars of the aluminium alloy AA1070 through...
Saved in:
Published in: | Journal of materials processing technology 2021-10, Vol.296, p.117189, Article 117189 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel process for fabricating cross-sectional shapes of curved profiles in industrial applications, two-billet differential velocity sideways extrusion (DVSE), is proposed in this study. The feasibility of the process is demonstrated by fabricating solid bars of the aluminium alloy AA1070 through the solid-state welding of two billets at elevated temperature. Microstructural examination has shown that the weld formed between the two billets consists of an unsound area in the dead metal zone within the die and a sound bonding area in the welding zone. Along the welding path, the effective and normal strains gradually increase while the shear strain decreases, leading to the transformation of grains from equiaxed to bamboo-like structures and increases in the hardness, average grain size, and fraction of low angle grain boundaries. The shear strength of the welded extrudate is larger than that of the material without welding. The effective strain in the welding zone is larger than that in other zones. Increasing the temperature or speed of extrusion decreases the unsound bonding area length and the shearing angle, thus improving the uniformity of distribution of the shear strain. The grain diameter is refined from ∼500 μm in the initial billet to ∼47 μm in the welding zone of the extrudate formed at 0.05 mm/s and 450 ℃. The hardness of the extrudate formed at 400 °C and 0.1 mm/s is ∼19 % larger than that of the initial billet, and is decreased by decreasing the extrusion speed or increasing the temperature. |
---|---|
ISSN: | 0924-0136 1873-4774 |
DOI: | 10.1016/j.jmatprotec.2021.117189 |