Loading…

Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem

Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is desi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.6864-6874
Main Authors: Jiang, Chengze, Xiao, Xiuchun, Liu, Dazhao, Huang, Haoen, Xiao, Hua, Lu, Huiyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3
cites cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3
container_end_page 6874
container_issue 10
container_start_page 6864
container_title IEEE transactions on industrial informatics
container_volume 17
creator Jiang, Chengze
Xiao, Xiuchun
Liu, Dazhao
Huang, Haoen
Xiao, Hua
Lu, Huiyan
description Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.
doi_str_mv 10.1109/TII.2020.3047959
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551362353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9310242</ieee_id><sourcerecordid>2551362353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEmNwR-ISiXOHkzRNc4SJj0nTADE4cImSNpk62mak7Rjiz5NqiIvtV35ty08UnWOYYAziajmbTQgQmFBIuGDiIBphkeAYgMFhqBnDMSVAj6OTtl0DUA5UjKKfhWty12zNDqmmQDeuD3Hqmrbzqmw69G68K5sVWpjeqyqk7sv5D2SdRy-u2g6tZVmb-E3570FMXb2pzC7oqjcFeu5V4VVX5ujJu5VXdT2YQq0rU59GR1ZVrTn7y-Po9e52OX2I54_3s-n1PM6JwF3MeQG4YBxboTNDdYJ1lpKUgUq5SLji2mJBMrCptpaqXBNtVUIBQ8YoZ4aOo8v93o13n71pO7l2vW_CSUkCFpoSymhwwd6Ve9e23li58WUd3pIY5IBYBsRyQCz_EIeRi_1IaYz5twuKgSSE_gKYb3ic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362353</pqid></control><display><type>article</type><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</creator><creatorcontrib>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</creatorcontrib><description>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3047959</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complex domain ; Computer simulation ; Constraint modelling ; Domains ; Informatics ; Linear equations ; Mathematical model ; Neural networks ; nonconvex and bound constraint ; Numerical models ; Quadratic programming ; Remote sensing ; Robustness ; small target detection ; Synthetic aperture radar ; Target detection ; Technological innovation ; time-varying quadratic programming (QP) ; zeroing neural network (ZNN)</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6864-6874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</citedby><cites>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</cites><orcidid>0000-0002-1681-8128 ; 0000-0002-1811-1070 ; 0000-0002-8086-2916 ; 0000-0002-3389-6689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9310242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Jiang, Chengze</creatorcontrib><creatorcontrib>Xiao, Xiuchun</creatorcontrib><creatorcontrib>Liu, Dazhao</creatorcontrib><creatorcontrib>Huang, Haoen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Lu, Huiyan</creatorcontrib><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</description><subject>Algorithms</subject><subject>Complex domain</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Domains</subject><subject>Informatics</subject><subject>Linear equations</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>nonconvex and bound constraint</subject><subject>Numerical models</subject><subject>Quadratic programming</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>small target detection</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Technological innovation</subject><subject>time-varying quadratic programming (QP)</subject><subject>zeroing neural network (ZNN)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhisEEmNwR-ISiXOHkzRNc4SJj0nTADE4cImSNpk62mak7Rjiz5NqiIvtV35ty08UnWOYYAziajmbTQgQmFBIuGDiIBphkeAYgMFhqBnDMSVAj6OTtl0DUA5UjKKfhWty12zNDqmmQDeuD3Hqmrbzqmw69G68K5sVWpjeqyqk7sv5D2SdRy-u2g6tZVmb-E3570FMXb2pzC7oqjcFeu5V4VVX5ujJu5VXdT2YQq0rU59GR1ZVrTn7y-Po9e52OX2I54_3s-n1PM6JwF3MeQG4YBxboTNDdYJ1lpKUgUq5SLji2mJBMrCptpaqXBNtVUIBQ8YoZ4aOo8v93o13n71pO7l2vW_CSUkCFpoSymhwwd6Ve9e23li58WUd3pIY5IBYBsRyQCz_EIeRi_1IaYz5twuKgSSE_gKYb3ic</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jiang, Chengze</creator><creator>Xiao, Xiuchun</creator><creator>Liu, Dazhao</creator><creator>Huang, Haoen</creator><creator>Xiao, Hua</creator><creator>Lu, Huiyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1681-8128</orcidid><orcidid>https://orcid.org/0000-0002-1811-1070</orcidid><orcidid>https://orcid.org/0000-0002-8086-2916</orcidid><orcidid>https://orcid.org/0000-0002-3389-6689</orcidid></search><sort><creationdate>20211001</creationdate><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><author>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complex domain</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Domains</topic><topic>Informatics</topic><topic>Linear equations</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>nonconvex and bound constraint</topic><topic>Numerical models</topic><topic>Quadratic programming</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>small target detection</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Technological innovation</topic><topic>time-varying quadratic programming (QP)</topic><topic>zeroing neural network (ZNN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chengze</creatorcontrib><creatorcontrib>Xiao, Xiuchun</creatorcontrib><creatorcontrib>Liu, Dazhao</creatorcontrib><creatorcontrib>Huang, Haoen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Lu, Huiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chengze</au><au>Xiao, Xiuchun</au><au>Liu, Dazhao</au><au>Huang, Haoen</au><au>Xiao, Hua</au><au>Lu, Huiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6864</spage><epage>6874</epage><pages>6864-6874</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3047959</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1681-8128</orcidid><orcidid>https://orcid.org/0000-0002-1811-1070</orcidid><orcidid>https://orcid.org/0000-0002-8086-2916</orcidid><orcidid>https://orcid.org/0000-0002-3389-6689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6864-6874
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2551362353
source IEEE Xplore (Online service)
subjects Algorithms
Complex domain
Computer simulation
Constraint modelling
Domains
Informatics
Linear equations
Mathematical model
Neural networks
nonconvex and bound constraint
Numerical models
Quadratic programming
Remote sensing
Robustness
small target detection
Synthetic aperture radar
Target detection
Technological innovation
time-varying quadratic programming (QP)
zeroing neural network (ZNN)
title Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconvex%20and%20Bound%20Constraint%20Zeroing%20Neural%20Network%20for%20Solving%20Time-Varying%20Complex-Valued%20Quadratic%20Programming%20Problem&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jiang,%20Chengze&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=6864&rft.epage=6874&rft.pages=6864-6874&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3047959&rft_dat=%3Cproquest_cross%3E2551362353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551362353&rft_id=info:pmid/&rft_ieee_id=9310242&rfr_iscdi=true