Loading…
Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem
Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is desi...
Saved in:
Published in: | IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.6864-6874 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3 |
container_end_page | 6874 |
container_issue | 10 |
container_start_page | 6864 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Jiang, Chengze Xiao, Xiuchun Liu, Dazhao Huang, Haoen Xiao, Hua Lu, Huiyan |
description | Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm. |
doi_str_mv | 10.1109/TII.2020.3047959 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551362353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9310242</ieee_id><sourcerecordid>2551362353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEmNwR-ISiXOHkzRNc4SJj0nTADE4cImSNpk62mak7Rjiz5NqiIvtV35ty08UnWOYYAziajmbTQgQmFBIuGDiIBphkeAYgMFhqBnDMSVAj6OTtl0DUA5UjKKfhWty12zNDqmmQDeuD3Hqmrbzqmw69G68K5sVWpjeqyqk7sv5D2SdRy-u2g6tZVmb-E3570FMXb2pzC7oqjcFeu5V4VVX5ujJu5VXdT2YQq0rU59GR1ZVrTn7y-Po9e52OX2I54_3s-n1PM6JwF3MeQG4YBxboTNDdYJ1lpKUgUq5SLji2mJBMrCptpaqXBNtVUIBQ8YoZ4aOo8v93o13n71pO7l2vW_CSUkCFpoSymhwwd6Ve9e23li58WUd3pIY5IBYBsRyQCz_EIeRi_1IaYz5twuKgSSE_gKYb3ic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362353</pqid></control><display><type>article</type><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</creator><creatorcontrib>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</creatorcontrib><description>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3047959</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complex domain ; Computer simulation ; Constraint modelling ; Domains ; Informatics ; Linear equations ; Mathematical model ; Neural networks ; nonconvex and bound constraint ; Numerical models ; Quadratic programming ; Remote sensing ; Robustness ; small target detection ; Synthetic aperture radar ; Target detection ; Technological innovation ; time-varying quadratic programming (QP) ; zeroing neural network (ZNN)</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6864-6874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</citedby><cites>FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</cites><orcidid>0000-0002-1681-8128 ; 0000-0002-1811-1070 ; 0000-0002-8086-2916 ; 0000-0002-3389-6689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9310242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Jiang, Chengze</creatorcontrib><creatorcontrib>Xiao, Xiuchun</creatorcontrib><creatorcontrib>Liu, Dazhao</creatorcontrib><creatorcontrib>Huang, Haoen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Lu, Huiyan</creatorcontrib><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</description><subject>Algorithms</subject><subject>Complex domain</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Domains</subject><subject>Informatics</subject><subject>Linear equations</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>nonconvex and bound constraint</subject><subject>Numerical models</subject><subject>Quadratic programming</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>small target detection</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Technological innovation</subject><subject>time-varying quadratic programming (QP)</subject><subject>zeroing neural network (ZNN)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhisEEmNwR-ISiXOHkzRNc4SJj0nTADE4cImSNpk62mak7Rjiz5NqiIvtV35ty08UnWOYYAziajmbTQgQmFBIuGDiIBphkeAYgMFhqBnDMSVAj6OTtl0DUA5UjKKfhWty12zNDqmmQDeuD3Hqmrbzqmw69G68K5sVWpjeqyqk7sv5D2SdRy-u2g6tZVmb-E3570FMXb2pzC7oqjcFeu5V4VVX5ujJu5VXdT2YQq0rU59GR1ZVrTn7y-Po9e52OX2I54_3s-n1PM6JwF3MeQG4YBxboTNDdYJ1lpKUgUq5SLji2mJBMrCptpaqXBNtVUIBQ8YoZ4aOo8v93o13n71pO7l2vW_CSUkCFpoSymhwwd6Ve9e23li58WUd3pIY5IBYBsRyQCz_EIeRi_1IaYz5twuKgSSE_gKYb3ic</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jiang, Chengze</creator><creator>Xiao, Xiuchun</creator><creator>Liu, Dazhao</creator><creator>Huang, Haoen</creator><creator>Xiao, Hua</creator><creator>Lu, Huiyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1681-8128</orcidid><orcidid>https://orcid.org/0000-0002-1811-1070</orcidid><orcidid>https://orcid.org/0000-0002-8086-2916</orcidid><orcidid>https://orcid.org/0000-0002-3389-6689</orcidid></search><sort><creationdate>20211001</creationdate><title>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</title><author>Jiang, Chengze ; Xiao, Xiuchun ; Liu, Dazhao ; Huang, Haoen ; Xiao, Hua ; Lu, Huiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complex domain</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Domains</topic><topic>Informatics</topic><topic>Linear equations</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>nonconvex and bound constraint</topic><topic>Numerical models</topic><topic>Quadratic programming</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>small target detection</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Technological innovation</topic><topic>time-varying quadratic programming (QP)</topic><topic>zeroing neural network (ZNN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chengze</creatorcontrib><creatorcontrib>Xiao, Xiuchun</creatorcontrib><creatorcontrib>Liu, Dazhao</creatorcontrib><creatorcontrib>Huang, Haoen</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Lu, Huiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chengze</au><au>Xiao, Xiuchun</au><au>Liu, Dazhao</au><au>Huang, Haoen</au><au>Xiao, Hua</au><au>Lu, Huiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6864</spage><epage>6874</epage><pages>6864-6874</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Many methods are known to solve the problem of real-valued and static quadratic programming (QP) effectively. However, few of them are still useful to solve the time-varying QP problem in the complex domain. In this study, a nonconvex and bound constraint zeroing neural network (NCZNN) model is designed and theorized to solve the time-varying complex-valued QP with linear equation constraint. Besides, we construct several new types of nonconvex and bound constraint complex-valued activation functions by extending real-valued activation functions to the complex domain. Subsequently, corresponding simulation experiments are conducted, and the simulation results verify the effectiveness and robustness of the proposed NCZNN model. Moreover, the model proposed in this article is further applied to solve the issue of small target detection in remote sensing images, which is modeled to QP problem with linear equation constraint by a serial of conversions based on constrained energy minimization algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3047959</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1681-8128</orcidid><orcidid>https://orcid.org/0000-0002-1811-1070</orcidid><orcidid>https://orcid.org/0000-0002-8086-2916</orcidid><orcidid>https://orcid.org/0000-0002-3389-6689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6864-6874 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2551362353 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Complex domain Computer simulation Constraint modelling Domains Informatics Linear equations Mathematical model Neural networks nonconvex and bound constraint Numerical models Quadratic programming Remote sensing Robustness small target detection Synthetic aperture radar Target detection Technological innovation time-varying quadratic programming (QP) zeroing neural network (ZNN) |
title | Nonconvex and Bound Constraint Zeroing Neural Network for Solving Time-Varying Complex-Valued Quadratic Programming Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconvex%20and%20Bound%20Constraint%20Zeroing%20Neural%20Network%20for%20Solving%20Time-Varying%20Complex-Valued%20Quadratic%20Programming%20Problem&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jiang,%20Chengze&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=6864&rft.epage=6874&rft.pages=6864-6874&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3047959&rft_dat=%3Cproquest_cross%3E2551362353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-77d01d571f9b8e3b41b862650a67947a7bf19280f6bff3acb2bfa4301085375e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551362353&rft_id=info:pmid/&rft_ieee_id=9310242&rfr_iscdi=true |