Loading…

Generative adversarial networks for transition state geometry prediction

This work introduces a novel application of generative adversarial networks (GANs) for the prediction of starting geometries in transition state (TS) searches based on the geometries of reactants and products. The multi-dimensional potential energy space of a chemical reaction often complicates the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-07, Vol.155 (2), p.024116-024116
Main Authors: Makoś, Małgorzata Z., Verma, Niraj, Larson, Eric C., Freindorf, Marek, Kraka, Elfi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work introduces a novel application of generative adversarial networks (GANs) for the prediction of starting geometries in transition state (TS) searches based on the geometries of reactants and products. The multi-dimensional potential energy space of a chemical reaction often complicates the location of a starting TS geometry, leading to the correct TS combining reactants and products in question. The proposed TS-GAN efficiently maps the space between reactants and products and generates reliable TS guess geometries, and it can be easily combined with any quantum chemical software package performing geometry optimizations. The TS-GAN was trained and applied to generate TS guess structures for typical chemical reactions, such as hydrogen migration, isomerization, and transition metal-catalyzed reactions. The performance of the TS-GAN was directly compared to that of classical approaches, proving its high accuracy and efficiency. The current TS-GAN can be extended to any dataset that contains sufficient chemical reactions for training. The software is freely available for training, experimentation, and prediction at https://github.com/ekraka/TS-GAN.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0055094