Loading…

The Impact of Mixing Treatments on Cloud Modelling in 3D Simulations of Hot Jupiters

We present results of 3D hydrodynamical simulations of HD209458b including a coupled, radiatively-active cloud model ({\sc EddySed}). We investigate the role of the mixing by replacing the default convective treatment used in previous works with a more physically relevant mixing treatment (\(K_{zz}\...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Christie, D A, Mayne, N J, Lines, S, Parmentier, V, Manners, J, Boutle, I, Drummond, B, Mikal-Evans, T, Sing, D K, Kohary, K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present results of 3D hydrodynamical simulations of HD209458b including a coupled, radiatively-active cloud model ({\sc EddySed}). We investigate the role of the mixing by replacing the default convective treatment used in previous works with a more physically relevant mixing treatment (\(K_{zz}\)) based on global circulation. We find that uncertainty in the efficiency of sedimentation through the sedimentation factor \(f_\mathrm{sed}\) plays a larger role in shaping cloud thickness and its radiative feedback on the local gas temperatures -- e.g. hot spot shift and day-to-night side temperature gradient -- than the switch in mixing treatment. We demonstrate using our new mixing treatments that simulations with cloud scales which are a fraction of the pressure scale height improve agreement with the observed transmission spectra, the emission spectra, and the Spitzer 4.5 \(\mathrm{\mu m}\) phase curve, although our models are still unable to reproduce the optical and UV transmission spectra. We also find that the inclusion of cloud increases the transit asymmetry in the optical between the east and west limbs, although the difference remains small (\(\lesssim 1\%\)).
ISSN:2331-8422
DOI:10.48550/arxiv.2107.05732