Loading…

An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements

The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2021-08, Vol.122 (15), p.3876-3899
Main Authors: Wang, Lei, Coombs, William M., Augarde, Charles E., Cortis, Michael, Brown, Michael J., Brennan, Andrew J., Knappett, Jonathan A., Davidson, Craig, Richards, David, White, David J., Blake, Anthony P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503
cites cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503
container_end_page 3899
container_issue 15
container_start_page 3876
container_title International journal for numerical methods in engineering
container_volume 122
creator Wang, Lei
Coombs, William M.
Augarde, Charles E.
Cortis, Michael
Brown, Michael J.
Brennan, Andrew J.
Knappett, Jonathan A.
Davidson, Craig
Richards, David
White, David J.
Blake, Anthony P.
description The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.
doi_str_mv 10.1002/nme.6685
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552118660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552118660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</originalsourceid><addsrcrecordid>eNp10DtOAzEQBmALgUQISBzBEg3NBtv7iF1GUXhIAZr0ltceE4fd9WJvBOk4AmfkJDiElmammE-jmR-hS0omlBB207UwqSpeHqERJWKaEUamx2iURiIrBaen6CzGDSGUliQfoWbWYbDWaQfdgFVncOP1q-tevj-_bADArRogONXg3rskWhjW3mDrAx7WaZ6YcS100fkuIZXKLrqI392wxtG1fQMfGBpIZIjn6MSqJsLFXx-j1e1iNb_Pls93D_PZMtM5m5ZZOs0UoqCi1qawBSXcAAhldKEo11SZoq6UYYobkWvCKxAl5UTlStSsTl-N0dVhbR_82xbiIDd-G9JlUbKyZJTyqtqr64PSwccYwMo-uFaFnaRE7qOUKUq5jzLR7EDfXQO7f518elz8-h_fgXiz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552118660</pqid></control><display><type>article</type><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</creator><creatorcontrib>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</creatorcontrib><description>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6685</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Computational grids ; Dimensional analysis ; elasto‐plasticity ; finite deformation mechanics ; Finite element method ; Locking ; material point method ; Mathematical analysis ; parallel analysis ; Parallel processing ; Solid mechanics ; volumetric locking</subject><ispartof>International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3876-3899</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</citedby><cites>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</cites><orcidid>0000-0002-5576-7853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Cortis, Michael</creatorcontrib><creatorcontrib>Brown, Michael J.</creatorcontrib><creatorcontrib>Brennan, Andrew J.</creatorcontrib><creatorcontrib>Knappett, Jonathan A.</creatorcontrib><creatorcontrib>Davidson, Craig</creatorcontrib><creatorcontrib>Richards, David</creatorcontrib><creatorcontrib>White, David J.</creatorcontrib><creatorcontrib>Blake, Anthony P.</creatorcontrib><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><title>International journal for numerical methods in engineering</title><description>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</description><subject>Computational grids</subject><subject>Dimensional analysis</subject><subject>elasto‐plasticity</subject><subject>finite deformation mechanics</subject><subject>Finite element method</subject><subject>Locking</subject><subject>material point method</subject><subject>Mathematical analysis</subject><subject>parallel analysis</subject><subject>Parallel processing</subject><subject>Solid mechanics</subject><subject>volumetric locking</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10DtOAzEQBmALgUQISBzBEg3NBtv7iF1GUXhIAZr0ltceE4fd9WJvBOk4AmfkJDiElmammE-jmR-hS0omlBB207UwqSpeHqERJWKaEUamx2iURiIrBaen6CzGDSGUliQfoWbWYbDWaQfdgFVncOP1q-tevj-_bADArRogONXg3rskWhjW3mDrAx7WaZ6YcS100fkuIZXKLrqI392wxtG1fQMfGBpIZIjn6MSqJsLFXx-j1e1iNb_Pls93D_PZMtM5m5ZZOs0UoqCi1qawBSXcAAhldKEo11SZoq6UYYobkWvCKxAl5UTlStSsTl-N0dVhbR_82xbiIDd-G9JlUbKyZJTyqtqr64PSwccYwMo-uFaFnaRE7qOUKUq5jzLR7EDfXQO7f518elz8-h_fgXiz</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Wang, Lei</creator><creator>Coombs, William M.</creator><creator>Augarde, Charles E.</creator><creator>Cortis, Michael</creator><creator>Brown, Michael J.</creator><creator>Brennan, Andrew J.</creator><creator>Knappett, Jonathan A.</creator><creator>Davidson, Craig</creator><creator>Richards, David</creator><creator>White, David J.</creator><creator>Blake, Anthony P.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5576-7853</orcidid></search><sort><creationdate>20210815</creationdate><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><author>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational grids</topic><topic>Dimensional analysis</topic><topic>elasto‐plasticity</topic><topic>finite deformation mechanics</topic><topic>Finite element method</topic><topic>Locking</topic><topic>material point method</topic><topic>Mathematical analysis</topic><topic>parallel analysis</topic><topic>Parallel processing</topic><topic>Solid mechanics</topic><topic>volumetric locking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Cortis, Michael</creatorcontrib><creatorcontrib>Brown, Michael J.</creatorcontrib><creatorcontrib>Brennan, Andrew J.</creatorcontrib><creatorcontrib>Knappett, Jonathan A.</creatorcontrib><creatorcontrib>Davidson, Craig</creatorcontrib><creatorcontrib>Richards, David</creatorcontrib><creatorcontrib>White, David J.</creatorcontrib><creatorcontrib>Blake, Anthony P.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Coombs, William M.</au><au>Augarde, Charles E.</au><au>Cortis, Michael</au><au>Brown, Michael J.</au><au>Brennan, Andrew J.</au><au>Knappett, Jonathan A.</au><au>Davidson, Craig</au><au>Richards, David</au><au>White, David J.</au><au>Blake, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>122</volume><issue>15</issue><spage>3876</spage><epage>3899</epage><pages>3876-3899</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6685</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5576-7853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3876-3899
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2552118660
source Wiley-Blackwell Read & Publish Collection
subjects Computational grids
Dimensional analysis
elasto‐plasticity
finite deformation mechanics
Finite element method
Locking
material point method
Mathematical analysis
parallel analysis
Parallel processing
Solid mechanics
volumetric locking
title An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20and%20locking%E2%80%90free%20material%20point%20method%20for%20three%E2%80%90dimensional%20analysis%20with%20simplex%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Wang,%20Lei&rft.date=2021-08-15&rft.volume=122&rft.issue=15&rft.spage=3876&rft.epage=3899&rft.pages=3876-3899&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6685&rft_dat=%3Cproquest_cross%3E2552118660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552118660&rft_id=info:pmid/&rfr_iscdi=true