Loading…
An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements
The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen...
Saved in:
Published in: | International journal for numerical methods in engineering 2021-08, Vol.122 (15), p.3876-3899 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503 |
---|---|
cites | cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503 |
container_end_page | 3899 |
container_issue | 15 |
container_start_page | 3876 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Wang, Lei Coombs, William M. Augarde, Charles E. Cortis, Michael Brown, Michael J. Brennan, Andrew J. Knappett, Jonathan A. Davidson, Craig Richards, David White, David J. Blake, Anthony P. |
description | The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency. |
doi_str_mv | 10.1002/nme.6685 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552118660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552118660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</originalsourceid><addsrcrecordid>eNp10DtOAzEQBmALgUQISBzBEg3NBtv7iF1GUXhIAZr0ltceE4fd9WJvBOk4AmfkJDiElmammE-jmR-hS0omlBB207UwqSpeHqERJWKaEUamx2iURiIrBaen6CzGDSGUliQfoWbWYbDWaQfdgFVncOP1q-tevj-_bADArRogONXg3rskWhjW3mDrAx7WaZ6YcS100fkuIZXKLrqI392wxtG1fQMfGBpIZIjn6MSqJsLFXx-j1e1iNb_Pls93D_PZMtM5m5ZZOs0UoqCi1qawBSXcAAhldKEo11SZoq6UYYobkWvCKxAl5UTlStSsTl-N0dVhbR_82xbiIDd-G9JlUbKyZJTyqtqr64PSwccYwMo-uFaFnaRE7qOUKUq5jzLR7EDfXQO7f518elz8-h_fgXiz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552118660</pqid></control><display><type>article</type><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</creator><creatorcontrib>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</creatorcontrib><description>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6685</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Computational grids ; Dimensional analysis ; elasto‐plasticity ; finite deformation mechanics ; Finite element method ; Locking ; material point method ; Mathematical analysis ; parallel analysis ; Parallel processing ; Solid mechanics ; volumetric locking</subject><ispartof>International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3876-3899</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</citedby><cites>FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</cites><orcidid>0000-0002-5576-7853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Cortis, Michael</creatorcontrib><creatorcontrib>Brown, Michael J.</creatorcontrib><creatorcontrib>Brennan, Andrew J.</creatorcontrib><creatorcontrib>Knappett, Jonathan A.</creatorcontrib><creatorcontrib>Davidson, Craig</creatorcontrib><creatorcontrib>Richards, David</creatorcontrib><creatorcontrib>White, David J.</creatorcontrib><creatorcontrib>Blake, Anthony P.</creatorcontrib><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><title>International journal for numerical methods in engineering</title><description>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</description><subject>Computational grids</subject><subject>Dimensional analysis</subject><subject>elasto‐plasticity</subject><subject>finite deformation mechanics</subject><subject>Finite element method</subject><subject>Locking</subject><subject>material point method</subject><subject>Mathematical analysis</subject><subject>parallel analysis</subject><subject>Parallel processing</subject><subject>Solid mechanics</subject><subject>volumetric locking</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10DtOAzEQBmALgUQISBzBEg3NBtv7iF1GUXhIAZr0ltceE4fd9WJvBOk4AmfkJDiElmammE-jmR-hS0omlBB207UwqSpeHqERJWKaEUamx2iURiIrBaen6CzGDSGUliQfoWbWYbDWaQfdgFVncOP1q-tevj-_bADArRogONXg3rskWhjW3mDrAx7WaZ6YcS100fkuIZXKLrqI392wxtG1fQMfGBpIZIjn6MSqJsLFXx-j1e1iNb_Pls93D_PZMtM5m5ZZOs0UoqCi1qawBSXcAAhldKEo11SZoq6UYYobkWvCKxAl5UTlStSsTl-N0dVhbR_82xbiIDd-G9JlUbKyZJTyqtqr64PSwccYwMo-uFaFnaRE7qOUKUq5jzLR7EDfXQO7f518elz8-h_fgXiz</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Wang, Lei</creator><creator>Coombs, William M.</creator><creator>Augarde, Charles E.</creator><creator>Cortis, Michael</creator><creator>Brown, Michael J.</creator><creator>Brennan, Andrew J.</creator><creator>Knappett, Jonathan A.</creator><creator>Davidson, Craig</creator><creator>Richards, David</creator><creator>White, David J.</creator><creator>Blake, Anthony P.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5576-7853</orcidid></search><sort><creationdate>20210815</creationdate><title>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</title><author>Wang, Lei ; Coombs, William M. ; Augarde, Charles E. ; Cortis, Michael ; Brown, Michael J. ; Brennan, Andrew J. ; Knappett, Jonathan A. ; Davidson, Craig ; Richards, David ; White, David J. ; Blake, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational grids</topic><topic>Dimensional analysis</topic><topic>elasto‐plasticity</topic><topic>finite deformation mechanics</topic><topic>Finite element method</topic><topic>Locking</topic><topic>material point method</topic><topic>Mathematical analysis</topic><topic>parallel analysis</topic><topic>Parallel processing</topic><topic>Solid mechanics</topic><topic>volumetric locking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Cortis, Michael</creatorcontrib><creatorcontrib>Brown, Michael J.</creatorcontrib><creatorcontrib>Brennan, Andrew J.</creatorcontrib><creatorcontrib>Knappett, Jonathan A.</creatorcontrib><creatorcontrib>Davidson, Craig</creatorcontrib><creatorcontrib>Richards, David</creatorcontrib><creatorcontrib>White, David J.</creatorcontrib><creatorcontrib>Blake, Anthony P.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Coombs, William M.</au><au>Augarde, Charles E.</au><au>Cortis, Michael</au><au>Brown, Michael J.</au><au>Brennan, Andrew J.</au><au>Knappett, Jonathan A.</au><au>Davidson, Craig</au><au>Richards, David</au><au>White, David J.</au><au>Blake, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>122</volume><issue>15</issue><spage>3876</spage><epage>3899</epage><pages>3876-3899</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The Material Point Method is a relative newcomer to the world of solid mechanics modelling. Its key advantage is the ability to model problems having large deformations while being relatively close to standard finite element methods, however its use for realistic engineering applications will happen only if the material point can be shown to be both efficient and accurate (compared to standard finite element methods), when modelling complex geometries with a range of material models. In this paper we present developments of the standard material point method aimed at realizing these goals. The key contribution provided here is the development of a material point method that avoids volumetric locking (arising from elastic or elasto‐plastic material behavior) while using low‐order tetrahedral finite elements for the background computational mesh, hence allowing unstructured background grids to be used for complex geometries. We also show that these developments can be effectively parallelized to improve computational efficiency.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6685</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5576-7853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3876-3899 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2552118660 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Computational grids Dimensional analysis elasto‐plasticity finite deformation mechanics Finite element method Locking material point method Mathematical analysis parallel analysis Parallel processing Solid mechanics volumetric locking |
title | An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20and%20locking%E2%80%90free%20material%20point%20method%20for%20three%E2%80%90dimensional%20analysis%20with%20simplex%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Wang,%20Lei&rft.date=2021-08-15&rft.volume=122&rft.issue=15&rft.spage=3876&rft.epage=3899&rft.pages=3876-3899&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6685&rft_dat=%3Cproquest_cross%3E2552118660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3275-115d49419bcd4f4108dee9adc4a18c1ad4b6ad2a8d93c086e95180a3a9b2b503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552118660&rft_id=info:pmid/&rfr_iscdi=true |