Loading…

L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant

This work proposes adaptive control-based design strategies to control a pressurized water reactor (PWR) nuclear power plant (NPP). An [Formula Omitted]-adaptive-based state-feedback control technique is proposed using the linear quadratic Gaussian control and projection-based adaptation laws. The c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2021-07, Vol.68 (7), p.1381-1398
Main Authors: Vajpayee, Vineet, Becerra, Victor, Bausch, Nils, Deng, Jiamei, Shimjith, S. R., Arul, A. John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3
cites cdi_FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3
container_end_page 1398
container_issue 7
container_start_page 1381
container_title IEEE transactions on nuclear science
container_volume 68
creator Vajpayee, Vineet
Becerra, Victor
Bausch, Nils
Deng, Jiamei
Shimjith, S. R.
Arul, A. John
description This work proposes adaptive control-based design strategies to control a pressurized water reactor (PWR) nuclear power plant (NPP). An [Formula Omitted]-adaptive-based state-feedback control technique is proposed using the linear quadratic Gaussian control and projection-based adaptation laws. The control scheme possesses good robustness capabilities in handling disturbances and uncertainties. A robust [Formula Omitted]-adaptive control technique is also proposed by combining the [Formula Omitted]-adaptive control with the loop transfer recovery (LTR) technology. The framework hence gives the strengthened robust set-point tracking performance given the matched and unmatched uncertainties and disturbances. The NPP model employed in this article is defined by five inputs, five outputs, and 38 state variables. A linear model for controller design is obtained by linearizing the nonlinear NPP model at operating conditions. Various simulations are carried out on subsystems of the NPP to verify the effectiveness of the proposed scheme. Numerical and statistical measures are computed for quantitative analysis of the controllers’ performance. Several classical control design techniques are also implemented, and their performance is compared with the proposed adaptive control techniques.
doi_str_mv 10.1109/TNS.2021.3090526
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552160335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552160335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKd3jwHPnd8kTZocx_wJYw7d8BjSJpWO2tSkVeZN_1T_Eju2y3s8eLwHH4QuCUwIAXW9WrxMKFAyYaCAU3GERoRzmRCeyWM0AiAyUalSp-gsxs0QUw58hNZz_Pf7k0ytabvq0-Fnn_exwzPfdMHX-MbF6q3BpQ_Y4GVwMfah-nYWv5rOhWS1bR1e9EXtTMBL_-UGrU3TnaOT0tTRXRx8jNZ3t6vZQzJ_un-cTedJQYF0SWoZSMe4KwkvM1oIJQVNrTRS2CzLSiEIcKJEpgBykpdGWQCWK6vSXFpq2Rhd7Xfb4D96Fzu98X1ohktNOadEAGN8aMG-VQQfY3ClbkP1bsJWE9A7eHqAp3fw9AEe-wdt62E4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552160335</pqid></control><display><type>article</type><title>L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant</title><source>IEEE Xplore (Online service)</source><creator>Vajpayee, Vineet ; Becerra, Victor ; Bausch, Nils ; Deng, Jiamei ; Shimjith, S. R. ; Arul, A. John</creator><creatorcontrib>Vajpayee, Vineet ; Becerra, Victor ; Bausch, Nils ; Deng, Jiamei ; Shimjith, S. R. ; Arul, A. John</creatorcontrib><description>This work proposes adaptive control-based design strategies to control a pressurized water reactor (PWR) nuclear power plant (NPP). An [Formula Omitted]-adaptive-based state-feedback control technique is proposed using the linear quadratic Gaussian control and projection-based adaptation laws. The control scheme possesses good robustness capabilities in handling disturbances and uncertainties. A robust [Formula Omitted]-adaptive control technique is also proposed by combining the [Formula Omitted]-adaptive control with the loop transfer recovery (LTR) technology. The framework hence gives the strengthened robust set-point tracking performance given the matched and unmatched uncertainties and disturbances. The NPP model employed in this article is defined by five inputs, five outputs, and 38 state variables. A linear model for controller design is obtained by linearizing the nonlinear NPP model at operating conditions. Various simulations are carried out on subsystems of the NPP to verify the effectiveness of the proposed scheme. Numerical and statistical measures are computed for quantitative analysis of the controllers’ performance. Several classical control design techniques are also implemented, and their performance is compared with the proposed adaptive control techniques.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3090526</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Adaptive control ; Control systems design ; Design ; Disturbances ; Feedback control ; Linear quadratic Gaussian control ; Loop transfer recovery ; Nuclear energy ; Nuclear power plants ; Pressurized water reactors ; Robust control ; Subsystems ; Technology transfer ; Uncertainty</subject><ispartof>IEEE transactions on nuclear science, 2021-07, Vol.68 (7), p.1381-1398</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3</citedby><cites>FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3</cites><orcidid>0000-0003-1179-7118 ; 0000-0002-3790-4236 ; 0000-0002-0989-1685 ; 0000-0001-9219-6052 ; 0000-0002-6005-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vajpayee, Vineet</creatorcontrib><creatorcontrib>Becerra, Victor</creatorcontrib><creatorcontrib>Bausch, Nils</creatorcontrib><creatorcontrib>Deng, Jiamei</creatorcontrib><creatorcontrib>Shimjith, S. R.</creatorcontrib><creatorcontrib>Arul, A. John</creatorcontrib><title>L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant</title><title>IEEE transactions on nuclear science</title><description>This work proposes adaptive control-based design strategies to control a pressurized water reactor (PWR) nuclear power plant (NPP). An [Formula Omitted]-adaptive-based state-feedback control technique is proposed using the linear quadratic Gaussian control and projection-based adaptation laws. The control scheme possesses good robustness capabilities in handling disturbances and uncertainties. A robust [Formula Omitted]-adaptive control technique is also proposed by combining the [Formula Omitted]-adaptive control with the loop transfer recovery (LTR) technology. The framework hence gives the strengthened robust set-point tracking performance given the matched and unmatched uncertainties and disturbances. The NPP model employed in this article is defined by five inputs, five outputs, and 38 state variables. A linear model for controller design is obtained by linearizing the nonlinear NPP model at operating conditions. Various simulations are carried out on subsystems of the NPP to verify the effectiveness of the proposed scheme. Numerical and statistical measures are computed for quantitative analysis of the controllers’ performance. Several classical control design techniques are also implemented, and their performance is compared with the proposed adaptive control techniques.</description><subject>Adaptive control</subject><subject>Control systems design</subject><subject>Design</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Linear quadratic Gaussian control</subject><subject>Loop transfer recovery</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Pressurized water reactors</subject><subject>Robust control</subject><subject>Subsystems</subject><subject>Technology transfer</subject><subject>Uncertainty</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAcxYMoOKd3jwHPnd8kTZocx_wJYw7d8BjSJpWO2tSkVeZN_1T_Eju2y3s8eLwHH4QuCUwIAXW9WrxMKFAyYaCAU3GERoRzmRCeyWM0AiAyUalSp-gsxs0QUw58hNZz_Pf7k0ytabvq0-Fnn_exwzPfdMHX-MbF6q3BpQ_Y4GVwMfah-nYWv5rOhWS1bR1e9EXtTMBL_-UGrU3TnaOT0tTRXRx8jNZ3t6vZQzJ_un-cTedJQYF0SWoZSMe4KwkvM1oIJQVNrTRS2CzLSiEIcKJEpgBykpdGWQCWK6vSXFpq2Rhd7Xfb4D96Fzu98X1ohktNOadEAGN8aMG-VQQfY3ClbkP1bsJWE9A7eHqAp3fw9AEe-wdt62E4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Vajpayee, Vineet</creator><creator>Becerra, Victor</creator><creator>Bausch, Nils</creator><creator>Deng, Jiamei</creator><creator>Shimjith, S. R.</creator><creator>Arul, A. John</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1179-7118</orcidid><orcidid>https://orcid.org/0000-0002-3790-4236</orcidid><orcidid>https://orcid.org/0000-0002-0989-1685</orcidid><orcidid>https://orcid.org/0000-0001-9219-6052</orcidid><orcidid>https://orcid.org/0000-0002-6005-5367</orcidid></search><sort><creationdate>20210701</creationdate><title>L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant</title><author>Vajpayee, Vineet ; Becerra, Victor ; Bausch, Nils ; Deng, Jiamei ; Shimjith, S. R. ; Arul, A. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Control systems design</topic><topic>Design</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Linear quadratic Gaussian control</topic><topic>Loop transfer recovery</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Pressurized water reactors</topic><topic>Robust control</topic><topic>Subsystems</topic><topic>Technology transfer</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vajpayee, Vineet</creatorcontrib><creatorcontrib>Becerra, Victor</creatorcontrib><creatorcontrib>Bausch, Nils</creatorcontrib><creatorcontrib>Deng, Jiamei</creatorcontrib><creatorcontrib>Shimjith, S. R.</creatorcontrib><creatorcontrib>Arul, A. John</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vajpayee, Vineet</au><au>Becerra, Victor</au><au>Bausch, Nils</au><au>Deng, Jiamei</au><au>Shimjith, S. R.</au><au>Arul, A. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant</atitle><jtitle>IEEE transactions on nuclear science</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>68</volume><issue>7</issue><spage>1381</spage><epage>1398</epage><pages>1381-1398</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><abstract>This work proposes adaptive control-based design strategies to control a pressurized water reactor (PWR) nuclear power plant (NPP). An [Formula Omitted]-adaptive-based state-feedback control technique is proposed using the linear quadratic Gaussian control and projection-based adaptation laws. The control scheme possesses good robustness capabilities in handling disturbances and uncertainties. A robust [Formula Omitted]-adaptive control technique is also proposed by combining the [Formula Omitted]-adaptive control with the loop transfer recovery (LTR) technology. The framework hence gives the strengthened robust set-point tracking performance given the matched and unmatched uncertainties and disturbances. The NPP model employed in this article is defined by five inputs, five outputs, and 38 state variables. A linear model for controller design is obtained by linearizing the nonlinear NPP model at operating conditions. Various simulations are carried out on subsystems of the NPP to verify the effectiveness of the proposed scheme. Numerical and statistical measures are computed for quantitative analysis of the controllers’ performance. Several classical control design techniques are also implemented, and their performance is compared with the proposed adaptive control techniques.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TNS.2021.3090526</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1179-7118</orcidid><orcidid>https://orcid.org/0000-0002-3790-4236</orcidid><orcidid>https://orcid.org/0000-0002-0989-1685</orcidid><orcidid>https://orcid.org/0000-0001-9219-6052</orcidid><orcidid>https://orcid.org/0000-0002-6005-5367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2021-07, Vol.68 (7), p.1381-1398
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2552160335
source IEEE Xplore (Online service)
subjects Adaptive control
Control systems design
Design
Disturbances
Feedback control
Linear quadratic Gaussian control
Loop transfer recovery
Nuclear energy
Nuclear power plants
Pressurized water reactors
Robust control
Subsystems
Technology transfer
Uncertainty
title L ₁-Adaptive Robust Control Design for a Pressurized Water-Type Nuclear Power Plant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%20%E2%82%81-Adaptive%20Robust%20Control%20Design%20for%20a%20Pressurized%20Water-Type%20Nuclear%20Power%20Plant&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Vajpayee,%20Vineet&rft.date=2021-07-01&rft.volume=68&rft.issue=7&rft.spage=1381&rft.epage=1398&rft.pages=1381-1398&rft.issn=0018-9499&rft.eissn=1558-1578&rft_id=info:doi/10.1109/TNS.2021.3090526&rft_dat=%3Cproquest_cross%3E2552160335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c201t-4d308e35ef15f72c698624d8a86d777f661051967900b1bfa9d003b9d94b8d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552160335&rft_id=info:pmid/&rfr_iscdi=true