Loading…
A numerical study of aerodynamic characteristics of a high-speed train with different rail models under crosswind
The CFD (Computational Fluid Dynamics) numerical simulation method with the DES (detached eddy simulation) approach was adopted in this paper to investigate and compare the aerodynamic performance, pressure distributions of the train surface, and flow fields near the train model placed above the sub...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit Journal of rail and rapid transit, 2021-08, Vol.235 (7), p.840-853 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The CFD (Computational Fluid Dynamics) numerical simulation method with the DES (detached eddy simulation) approach was adopted in this paper to investigate and compare the aerodynamic performance, pressure distributions of the train surface, and flow fields near the train model placed above the subgrade with non-rail, realistic rail, and simplified rail models under crosswind. The numerical methods were verified with the wind tunnel tests. Significant differences in aerodynamic performances of the train body and bogie were found in the cases with and without a rail model as the presence of the rail model had significant impacts on the flow field underneath the vehicle. A larger yaw angle can result in a more significant difference in aerodynamic coefficients. The deviations of the train aerodynamic forces and the pressure distribution on the train body with the realistic and simplified rail models were not significant. It was concluded that a rail model is necessary to get more realistic results, especially for large yaw angle conditions. Moreover, a simplified rectangular rail model is suggested to be employed instead of the realistic rail and is capable to get accurate results. |
---|---|
ISSN: | 0954-4097 2041-3017 |
DOI: | 10.1177/0954409720969250 |