Loading…
Conduction cooled narrow linewidth sub-nanosecond multi-beam laser
A conduction cooled high peak power, narrow linewidth, and sub-nanosecond multi-beam laser as an excellent candidate for non-scanning lidar is demonstrated. This laser is based on master oscillator power amplifier (MOPA) scheme which consists of a pulse pumped Nd:YAG/Cr 4+ :YAG microchip laser as th...
Saved in:
Published in: | Optoelectronics letters 2021-09, Vol.17 (9), p.518-522 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A conduction cooled high peak power, narrow linewidth, and sub-nanosecond multi-beam laser as an excellent candidate for non-scanning lidar is demonstrated. This laser is based on master oscillator power amplifier (MOPA) scheme which consists of a pulse pumped Nd:YAG/Cr
4+
:YAG microchip laser as the master oscillator and a high efficient grazing incidence Nd:YVO
4
slab amplifier, and the output beam is expanded to 100 mm diameter by a 50× low aberration Galileo beam expander and then divided into a 50×2 staggered arrangement multi-beam array by a diffractive laser splitter. The laser operates at 1 064.28 nm with a spectral linewidth about 20 pm, which generates 1 mJ, 0.78 ns pulses at 7 kHz rate. The fluctuation of output power is less than ±2% when it works continuously for 1 h. The energy uniformity of the 100 sub-beams is up to 90%, the divergence of each sub-beam is about 20 µrad, and the total transmission efficiency of the diffractive laser splitter is more than 85%. |
---|---|
ISSN: | 1673-1905 1993-5013 |
DOI: | 10.1007/s11801-021-0167-6 |