Loading…

Stock Price Forecast Based on CNN-BiLSTM-ECA Model

Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challengin...

Full description

Saved in:
Bibliographic Details
Published in:Scientific programming 2021, Vol.2021, p.1-20
Main Authors: Chen, Yu, Fang, Ruixin, Liang, Ting, Sha, Zongyu, Li, Shicheng, Yi, Yugen, Zhou, Wei, Song, Huilin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3
cites cdi_FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3
container_end_page 20
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2021
creator Chen, Yu
Fang, Ruixin
Liang, Ting
Sha, Zongyu
Li, Shicheng
Yi, Yugen
Zhou, Wei
Song, Huilin
description Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challenging task due to high noise, nonlinearity, and volatility of the stock price time series data. In order to provide better prediction results of stock price, a new stock price prediction model named as CNN-BiLSTM-ECA is proposed, which combines Convolutional Neural Network (CNN), Bidirectional Long Short-term Memory (BiLSTM) network, and Attention Mechanism (AM). More specifically, CNN is utilized to extract the deep features of stock data for reducing the influence of high noise and nonlinearity. Then, BiLSTM network is employed to predict the stock price based on the extracted deep features. Meanwhile, a novel Efficient Channel Attention (ECA) module is introduced into the network model to further improve the sensitivity of the network to the important features and key information. Finally, extensive experiments are conducted on the three stock datasets such as Shanghai Composite Index, China Unicom, and CSI 300. Compared with the existing methods, the experimental results verify the effectiveness and feasibility of the proposed CNN-BILSTM-ECA network model, which can provide an important reference for investors to make decisions.
doi_str_mv 10.1155/2021/2446543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552745769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552745769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f8CAS43Ny9dMlu3QqtBWoRXchSSTwam1qcmU4r93Srt29S68w71wELoF8gggxIASCgPKuRScnaEeFLnACtTHeZeJKLDqfpfoKqUVIVAAIT1EF21wX9lbbJzPJiF6Z1KbjUzyVRY2WTmf41EzXSxneFwOs1mo_PoaXdRmnfzN6fbR-2S8LJ_x9PXppRxOsWMsbzEHRa3JJaVWkVw6yy1hghEBzlsD1lLnZEGBFxKEUVUlvZLM1rTgpgLrWR_dHXu3MfzsfGr1KuzippvUVAiac5FL1VEPR8rFkFL0td7G5tvEXw1EH6zogxV9stLh90f8s9lUZt_8T_8BGrtdeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552745769</pqid></control><display><type>article</type><title>Stock Price Forecast Based on CNN-BiLSTM-ECA Model</title><source>Wiley Online Library Open Access</source><creator>Chen, Yu ; Fang, Ruixin ; Liang, Ting ; Sha, Zongyu ; Li, Shicheng ; Yi, Yugen ; Zhou, Wei ; Song, Huilin</creator><contributor>Jiang, Yi-Zhang ; Yi-Zhang Jiang</contributor><creatorcontrib>Chen, Yu ; Fang, Ruixin ; Liang, Ting ; Sha, Zongyu ; Li, Shicheng ; Yi, Yugen ; Zhou, Wei ; Song, Huilin ; Jiang, Yi-Zhang ; Yi-Zhang Jiang</creatorcontrib><description>Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challenging task due to high noise, nonlinearity, and volatility of the stock price time series data. In order to provide better prediction results of stock price, a new stock price prediction model named as CNN-BiLSTM-ECA is proposed, which combines Convolutional Neural Network (CNN), Bidirectional Long Short-term Memory (BiLSTM) network, and Attention Mechanism (AM). More specifically, CNN is utilized to extract the deep features of stock data for reducing the influence of high noise and nonlinearity. Then, BiLSTM network is employed to predict the stock price based on the extracted deep features. Meanwhile, a novel Efficient Channel Attention (ECA) module is introduced into the network model to further improve the sensitivity of the network to the important features and key information. Finally, extensive experiments are conducted on the three stock datasets such as Shanghai Composite Index, China Unicom, and CSI 300. Compared with the existing methods, the experimental results verify the effectiveness and feasibility of the proposed CNN-BILSTM-ECA network model, which can provide an important reference for investors to make decisions.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/2446543</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Artificial neural networks ; Data analysis ; Deep learning ; Econometrics ; Feature extraction ; Investments ; Machine learning ; Mathematical models ; Multimedia ; Neural networks ; Nonlinearity ; Prediction models ; Pricing ; Securities markets ; Social research ; Stock exchanges ; Support vector machines ; Time series</subject><ispartof>Scientific programming, 2021, Vol.2021, p.1-20</ispartof><rights>Copyright © 2021 Yu Chen et al.</rights><rights>Copyright © 2021 Yu Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3</citedby><cites>FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3</cites><orcidid>0000-0002-7113-5952 ; 0000-0002-8769-4388 ; 0000-0002-8488-7192 ; 0000-0001-8741-8028 ; 0000-0003-4432-3840 ; 0000-0003-2000-2938 ; 0000-0001-9828-0319 ; 0000-0002-5931-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><contributor>Jiang, Yi-Zhang</contributor><contributor>Yi-Zhang Jiang</contributor><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Fang, Ruixin</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Sha, Zongyu</creatorcontrib><creatorcontrib>Li, Shicheng</creatorcontrib><creatorcontrib>Yi, Yugen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Song, Huilin</creatorcontrib><title>Stock Price Forecast Based on CNN-BiLSTM-ECA Model</title><title>Scientific programming</title><description>Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challenging task due to high noise, nonlinearity, and volatility of the stock price time series data. In order to provide better prediction results of stock price, a new stock price prediction model named as CNN-BiLSTM-ECA is proposed, which combines Convolutional Neural Network (CNN), Bidirectional Long Short-term Memory (BiLSTM) network, and Attention Mechanism (AM). More specifically, CNN is utilized to extract the deep features of stock data for reducing the influence of high noise and nonlinearity. Then, BiLSTM network is employed to predict the stock price based on the extracted deep features. Meanwhile, a novel Efficient Channel Attention (ECA) module is introduced into the network model to further improve the sensitivity of the network to the important features and key information. Finally, extensive experiments are conducted on the three stock datasets such as Shanghai Composite Index, China Unicom, and CSI 300. Compared with the existing methods, the experimental results verify the effectiveness and feasibility of the proposed CNN-BILSTM-ECA network model, which can provide an important reference for investors to make decisions.</description><subject>Artificial neural networks</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Econometrics</subject><subject>Feature extraction</subject><subject>Investments</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multimedia</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Prediction models</subject><subject>Pricing</subject><subject>Securities markets</subject><subject>Social research</subject><subject>Stock exchanges</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs7f8CAS43Ny9dMlu3QqtBWoRXchSSTwam1qcmU4r93Srt29S68w71wELoF8gggxIASCgPKuRScnaEeFLnACtTHeZeJKLDqfpfoKqUVIVAAIT1EF21wX9lbbJzPJiF6Z1KbjUzyVRY2WTmf41EzXSxneFwOs1mo_PoaXdRmnfzN6fbR-2S8LJ_x9PXppRxOsWMsbzEHRa3JJaVWkVw6yy1hghEBzlsD1lLnZEGBFxKEUVUlvZLM1rTgpgLrWR_dHXu3MfzsfGr1KuzippvUVAiac5FL1VEPR8rFkFL0td7G5tvEXw1EH6zogxV9stLh90f8s9lUZt_8T_8BGrtdeQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Yu</creator><creator>Fang, Ruixin</creator><creator>Liang, Ting</creator><creator>Sha, Zongyu</creator><creator>Li, Shicheng</creator><creator>Yi, Yugen</creator><creator>Zhou, Wei</creator><creator>Song, Huilin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7113-5952</orcidid><orcidid>https://orcid.org/0000-0002-8769-4388</orcidid><orcidid>https://orcid.org/0000-0002-8488-7192</orcidid><orcidid>https://orcid.org/0000-0001-8741-8028</orcidid><orcidid>https://orcid.org/0000-0003-4432-3840</orcidid><orcidid>https://orcid.org/0000-0003-2000-2938</orcidid><orcidid>https://orcid.org/0000-0001-9828-0319</orcidid><orcidid>https://orcid.org/0000-0002-5931-3197</orcidid></search><sort><creationdate>2021</creationdate><title>Stock Price Forecast Based on CNN-BiLSTM-ECA Model</title><author>Chen, Yu ; Fang, Ruixin ; Liang, Ting ; Sha, Zongyu ; Li, Shicheng ; Yi, Yugen ; Zhou, Wei ; Song, Huilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Econometrics</topic><topic>Feature extraction</topic><topic>Investments</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multimedia</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Prediction models</topic><topic>Pricing</topic><topic>Securities markets</topic><topic>Social research</topic><topic>Stock exchanges</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Fang, Ruixin</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Sha, Zongyu</creatorcontrib><creatorcontrib>Li, Shicheng</creatorcontrib><creatorcontrib>Yi, Yugen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Song, Huilin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Fang, Ruixin</au><au>Liang, Ting</au><au>Sha, Zongyu</au><au>Li, Shicheng</au><au>Yi, Yugen</au><au>Zhou, Wei</au><au>Song, Huilin</au><au>Jiang, Yi-Zhang</au><au>Yi-Zhang Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stock Price Forecast Based on CNN-BiLSTM-ECA Model</atitle><jtitle>Scientific programming</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Financial data as a kind of multimedia data contains rich information, which has been widely used for data analysis task. However, how to predict the stock price is still a hot research problem for investors and researchers in financial field. Forecasting stock prices becomes an extremely challenging task due to high noise, nonlinearity, and volatility of the stock price time series data. In order to provide better prediction results of stock price, a new stock price prediction model named as CNN-BiLSTM-ECA is proposed, which combines Convolutional Neural Network (CNN), Bidirectional Long Short-term Memory (BiLSTM) network, and Attention Mechanism (AM). More specifically, CNN is utilized to extract the deep features of stock data for reducing the influence of high noise and nonlinearity. Then, BiLSTM network is employed to predict the stock price based on the extracted deep features. Meanwhile, a novel Efficient Channel Attention (ECA) module is introduced into the network model to further improve the sensitivity of the network to the important features and key information. Finally, extensive experiments are conducted on the three stock datasets such as Shanghai Composite Index, China Unicom, and CSI 300. Compared with the existing methods, the experimental results verify the effectiveness and feasibility of the proposed CNN-BILSTM-ECA network model, which can provide an important reference for investors to make decisions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/2446543</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7113-5952</orcidid><orcidid>https://orcid.org/0000-0002-8769-4388</orcidid><orcidid>https://orcid.org/0000-0002-8488-7192</orcidid><orcidid>https://orcid.org/0000-0001-8741-8028</orcidid><orcidid>https://orcid.org/0000-0003-4432-3840</orcidid><orcidid>https://orcid.org/0000-0003-2000-2938</orcidid><orcidid>https://orcid.org/0000-0001-9828-0319</orcidid><orcidid>https://orcid.org/0000-0002-5931-3197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2021, Vol.2021, p.1-20
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2552745769
source Wiley Online Library Open Access
subjects Artificial neural networks
Data analysis
Deep learning
Econometrics
Feature extraction
Investments
Machine learning
Mathematical models
Multimedia
Neural networks
Nonlinearity
Prediction models
Pricing
Securities markets
Social research
Stock exchanges
Support vector machines
Time series
title Stock Price Forecast Based on CNN-BiLSTM-ECA Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stock%20Price%20Forecast%20Based%20on%20CNN-BiLSTM-ECA%20Model&rft.jtitle=Scientific%20programming&rft.au=Chen,%20Yu&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/2446543&rft_dat=%3Cproquest_cross%3E2552745769%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-4192ba7622b9076cb4b0353051ceba1bb2cc682148615a9dd6e963bf284ad1be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552745769&rft_id=info:pmid/&rfr_iscdi=true